在平面直角坐標(biāo)系xOy中,直線(xiàn)l的參數(shù)方程為 (t為參數(shù)),它與曲線(xiàn)C:(y-2)2-x2=1交于A、B兩點(diǎn).
(1)求|AB|的長(zhǎng);
(2)以O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,設(shè)點(diǎn)P的極坐標(biāo)為,求點(diǎn)P到線(xiàn)段AB中點(diǎn)M的距離.
(1)(2)
解析
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
長(zhǎng)為3的線(xiàn)段兩端點(diǎn)A,B分別在x軸正半軸和y軸的正半軸上滑動(dòng),,點(diǎn)P的軌跡為曲線(xiàn)C.
(1)以直線(xiàn)AB的傾斜角為參數(shù),求曲線(xiàn)C的參數(shù)方程;
(2)求點(diǎn)P到點(diǎn)D距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在曲線(xiàn)C1:(θ為參數(shù),0≤θ<2π)上求一點(diǎn),使它到直線(xiàn)C2:(t為參數(shù))的距離最小,并求出該點(diǎn)坐標(biāo)和最小距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在平面直角坐標(biāo)系xOy中,求過(guò)橢圓 (φ為參數(shù))的右焦點(diǎn),且與直線(xiàn) (t為參數(shù))平行的直線(xiàn)的普通方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
以坐標(biāo)原點(diǎn)O為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)C1的極坐標(biāo)方程為:,曲線(xiàn)C2的參數(shù)方程為:,點(diǎn)N的極坐標(biāo)為.
(Ⅰ)若M是曲線(xiàn)C1上的動(dòng)點(diǎn),求M到定點(diǎn)N的距離的最小值;
(Ⅱ)若曲線(xiàn)C1與曲線(xiàn)C2有有兩個(gè)不同交點(diǎn),求正數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(考生注意:只能從A,B,C中選擇一題作答,并將答案填寫(xiě)在相應(yīng)字母后的橫線(xiàn)上,若多做,則按所做的第一題評(píng)閱給分.)
A.選修4-1:幾何證明選講
已知Rt△ABC的兩條直角邊AC,BC的長(zhǎng)分別為3cm,4cm,以AC為直徑的圓與AB交于點(diǎn)D,則BD的值為_(kāi)___.
B.選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,已知圓與直線(xiàn)相切,求實(shí)數(shù)a的值______.
C.選修4-5:不等式選講
不等式對(duì)任意實(shí)數(shù)恒成立,求實(shí)數(shù)的取值范圍____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知直線(xiàn)l經(jīng)過(guò)點(diǎn)P(1,1),傾斜角α=.
(1)寫(xiě)出直線(xiàn)l的參數(shù)方程;
(2)設(shè)l與圓x2+y2=4相交于兩點(diǎn)A、B,求點(diǎn)P到A、B兩點(diǎn)的距離之積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com