【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 首項(xiàng)為a1且1,an , Sn成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)數(shù)列{bn}滿(mǎn)足bn=(log2a2n+1)×(log2a2n+3),求數(shù)列 的前n項(xiàng)和Tn

【答案】
(1)解:∵1,an,Sn成等差數(shù)列,∴2an=Sn+1,

∴n=1時(shí),2a1=a1+1,解得a1=1.n≥2時(shí),2an﹣2an1=an,即an=2an1

∴數(shù)列{an}是等比數(shù)列,公比為2,首項(xiàng)為1.∴


(2)解:bn=(log2a2n+1)×(log2a2n+3)= =2n(2n+2)=4n(n+1),

,

∴數(shù)列 的前n項(xiàng)和Tn=

= =


【解析】(1)1,an , Sn成等差數(shù)列,可得2an=Sn+1,n=1時(shí),2a1=a1+1,解得a1 . n≥2時(shí),利用遞推關(guān)系可得an=2an1 . (2)bn=(log2a2n+1)×(log2a2n+3)= =4n(n+1),可得 ,利用“裂項(xiàng)求和方法”即可得出.
【考點(diǎn)精析】掌握數(shù)列的前n項(xiàng)和是解答本題的根本,需要知道數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線(xiàn)l與橢圓 交于兩點(diǎn)A(x1 , y1),B(x2 , y2),橢圓上的點(diǎn)到下焦點(diǎn)距離的最大值、最小值分別為 ,向量 =(ax1 , by1), =(ax2 , by2),且 ,O為坐標(biāo)原點(diǎn). (Ⅰ)求橢圓的方程;
(Ⅱ)判斷△AOB的面積是否為定值,如果是,請(qǐng)給予證明;如果不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(Ⅰ) 計(jì)算:2 ﹣( +lg +( ﹣1)lg1+(lg5)2+lg2lg50
(Ⅱ)已知x +x =3,求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】經(jīng)市場(chǎng)調(diào)查,東方百貨超市的一種商品在過(guò)去的一個(gè)月內(nèi)(以30天計(jì)算),銷(xiāo)售價(jià)格f(t)與時(shí)間(天)的函數(shù)關(guān)系近似滿(mǎn)足 ,銷(xiāo)售量g(t)與時(shí)間(天)的函數(shù)關(guān)系近似滿(mǎn)足g(t)=
(1)試寫(xiě)出該商品的日銷(xiāo)售金額W(t)關(guān)于時(shí)間t(1≤t≤30,t∈N)的函數(shù)表達(dá)式;
(2)求該商品的日銷(xiāo)售金額W(t)的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù) 內(nèi)任取兩個(gè)實(shí)數(shù)p,q,且p≠q,不等式 恒成立,則a的取值范圍是(
A.[﹣1,0]
B.[﹣1,+∞)
C.[0,3]
D.[3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=(x+1)lnx﹣a(x﹣1).
(1)當(dāng)a=3時(shí),求曲線(xiàn)y=f(x)在(1,f(1))處的切線(xiàn)方程;
(2)設(shè) ,且a>1,討論函數(shù)g(x)的單調(diào)性和極值點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖線(xiàn)段AB過(guò)x軸正半軸上一定點(diǎn)M(m,0),端點(diǎn)A、B到x軸距離之積為2m,以x軸為對(duì)稱(chēng)軸,過(guò)A,O,B三點(diǎn)作拋物線(xiàn).
(1)求拋物線(xiàn)方程;
(2)若 =﹣1,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù) 的定義域?yàn)榧? ,函數(shù) 的定義域?yàn)榧? .
(1)若 ,求實(shí)數(shù) 的取值范圍;
(2)若 ,求實(shí)數(shù) 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}滿(mǎn)足an+1=an﹣2anan+1 , an≠0且a1=1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令 ,求數(shù)列{bn}的前2n項(xiàng)和T2n

查看答案和解析>>

同步練習(xí)冊(cè)答案