【題目】年底,我國發(fā)明專利申請量已經(jīng)連續(xù)年位居世界首位,下表是我國年至年發(fā)明專利申請量以及相關(guān)數(shù)據(jù).

注:年份代碼分別表示.

1)可以看出申請量每年都在增加,請問這幾年中哪一年的增長率達到最高,最高是多少?

2)建立關(guān)于的回歸直線方程(精確到),并預測我國發(fā)明專利申請量突破萬件的年份.

參考公式:回歸直線的斜率和截距的最小二乘法估計分別為,

【答案】(1)2013年的增長率最高,達到了26%(2)關(guān)于的回歸直線方程為,預測我國發(fā)明專利申請量將在2021年突破200萬件

【解析】

1)分別計算每一年的增長率,比較大小得到答案.

2)根據(jù)公式直接計算得到回歸直線方程為,再解不等式得到答案.

1)由表格可知2013,2014,2015,20162017,2018年的增長率分別如下:,

所以2013年的增長率最高,達到了26%

2)由表格可計算出:,

關(guān)于的回歸直線方程為

所以根據(jù)回歸方程可預測,我國發(fā)明專利申請量將在2021年突破200萬件.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某生態(tài)農(nóng)莊有一塊如圖所示的空地,其中半圓O的直徑為300米,A為直徑延長線上的點,米,B為半圓上任意一點,以AB為一邊作等腰直角,其中BC為斜邊.

;,求四邊形OACB的面積;

現(xiàn)決定對四邊形OACB區(qū)域地塊進行開發(fā),將區(qū)域開發(fā)成垂釣中心,預計每平方米獲利10元,將區(qū)域開發(fā)成親子采摘中心,預計每平方米獲利20元,則當為多大時,垂釣中心和親子采摘中心獲利之和最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直四棱柱中,底面是菱形,,、分別是線段的中點.

1)求證:;

2)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知四棱錐SABCD的底面為矩形,SA⊥底面ABCD,點E在線段BC上,以AD為直徑的圓過點 E.若SAAB=3,則△SED面積的最小值為_____

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:極坐標與參數(shù)方程

在極坐標系下,已知圓O和直線

1求圓O和直線l的直角坐標方程;

2時,求直線l與圓O公共點的一個極坐標

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中國一帶一路戰(zhàn)略構(gòu)思提出后,某科技企業(yè)為抓住一帶一路帶來的機遇,決定開發(fā)生產(chǎn)一款大型電子設(shè)備.生產(chǎn)這種設(shè)備的年固定成本為500萬元,每生產(chǎn)x臺,需另投入成本萬元,當年產(chǎn)量不足60臺時,萬元;當年產(chǎn)量不小于60臺時,萬元若每臺設(shè)備售價為100萬元,通過市場分析,該企業(yè)生產(chǎn)的電子設(shè)備能全部售完.

求年利潤萬元關(guān)于年產(chǎn)量的函數(shù)關(guān)系式;

當年產(chǎn)量為多少臺時,該企業(yè)在這一電子設(shè)備的生產(chǎn)中所獲利潤最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,底面ABCD為正方形,PD⊥平面ABCDPDAD2.

(1)求該四棱錐P-ABCD的表面積和體積;

(2)求該四棱錐P-ABCD內(nèi)切球的表面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)橢圓的一個頂點與拋物線的焦點重合,、分別是橢圓的左、右焦點,其離心率橢圓右焦點的直線與橢圓交于、兩點.

1)求橢圓的方程;

2)是否存在直線,使得?若存在,求出直線的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若定義在R上的函數(shù)滿足:對于任意實數(shù)x、y,總有恒成立,我們稱類余弦型函數(shù).

已知類余弦型函數(shù),且,求的值;

的條件下,定義數(shù)列23,的值.

類余弦型函數(shù),且對于任意非零實數(shù)t,總有,證明:函數(shù)為偶函數(shù),設(shè)有理數(shù)滿足,判斷的大小關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

同步練習冊答案