【題目】已知拋物線的焦點(diǎn)為,,是拋物線上關(guān)于軸對(duì)稱的兩點(diǎn),點(diǎn)是拋物線準(zhǔn)線軸的交點(diǎn),是面積為4的直角三角形.

(1)求拋物線的方程;

(2)若為拋物線上異于原點(diǎn)的任意一點(diǎn),過(guò)的垂線交準(zhǔn)線于點(diǎn),則直線與拋物線是何種位置關(guān)系?請(qǐng)說(shuō)明理由.

【答案】(1);(2)相切,理由見(jiàn)解析.

【解析】

1)由直角三角形及對(duì)稱性可設(shè)直線的方程為,聯(lián)立,解得點(diǎn)坐標(biāo),則可得到點(diǎn)坐標(biāo),進(jìn)而利用三角形面積求得,即可得到拋物線方程;

2)設(shè),則直線的斜率為,則可設(shè)直線的方程為,,求得點(diǎn)坐標(biāo),進(jìn)而求得直線的斜率,利用導(dǎo)數(shù)得到拋物線在點(diǎn)處的切線斜率,即可判斷位置關(guān)系

(1)由題,,是直角三角形,且,是拋物線上關(guān)于軸對(duì)稱的兩點(diǎn),

所以,設(shè)原點(diǎn)為,則,

不妨設(shè)點(diǎn)位于第一象限,則設(shè)直線的方程為,

聯(lián)立方程,解得,

所以,,

,

解得,

故拋物線的方程為

(2)相切,

由(1)得焦點(diǎn),

設(shè),則直線的斜率為,

所以直線的方程為,

,得,所以點(diǎn),

則直線的斜率為,

,即拋物線在點(diǎn)處的切線的斜率為,

故直線與拋物線相切

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為響應(yīng)“文化強(qiáng)國(guó)建設(shè)”號(hào)召,并增加學(xué)生們對(duì)古典文學(xué)的學(xué)習(xí)興趣,雅禮中學(xué)計(jì)劃建設(shè)一個(gè)古典文學(xué)熏陶室.為了解學(xué)生閱讀需求,隨機(jī)抽取200名學(xué)生做統(tǒng)計(jì)調(diào)查.統(tǒng)計(jì)顯示,男生喜歡閱讀古典文學(xué)的有64人,不喜歡的有56人;女生喜歡閱讀古典文學(xué)的有36人,不喜歡的有44.

(1)能否在犯錯(cuò)誤的概率不超過(guò)0.25的前提下認(rèn)為喜歡閱讀古典文學(xué)與性別有關(guān)系?

(2)為引導(dǎo)學(xué)生積極參與閱讀古典文學(xué)書(shū)籍,語(yǔ)文教研組計(jì)劃牽頭舉辦雅禮教育集團(tuán)古典文學(xué)閱讀交流會(huì).經(jīng)過(guò)綜合考慮與對(duì)比,語(yǔ)文教研組已經(jīng)從這200人中篩選出了5名男生代表和4名女生代表,其中有3名男生代表和2名女生代表喜歡古典文學(xué).現(xiàn)從這9名代表中任選3名男生代表和2名女生代表參加交流會(huì),記為參加交流會(huì)的5人中喜歡古典文學(xué)的人數(shù),求的分布列及數(shù)學(xué)期望.

附:,其中.

參考數(shù)據(jù):

0.50

0.40

0.25

0.15

0.10

0.05

0.455

0.708

1.323

2.072

2.706

3.841

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的中心在坐標(biāo)原點(diǎn),長(zhǎng)軸在x軸上,長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的2倍,兩焦點(diǎn)分別為,橢圓上一點(diǎn)到的距離之和為12.的圓心為.

1)求的面積;

2)若橢圓上所有點(diǎn)都在一個(gè)圓內(nèi),則稱圓包圍這個(gè)橢圓.問(wèn):是否存在實(shí)數(shù)k使得圓包圍橢圓?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(Ⅰ)若,求實(shí)數(shù)取值的集合;

(Ⅱ)證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)討論的單調(diào)性;

2)若函數(shù)有兩個(gè)零點(diǎn),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,設(shè)點(diǎn)集,.從集合Mn中任取兩個(gè)不同的點(diǎn),用隨機(jī)變量X表示它們之間的距離.

1)當(dāng)n=1時(shí),求X的概率分布;

2)對(duì)給定的正整數(shù)nn≥3),求概率PXn)(用n表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某牛奶廠要將一批牛奶用汽車從所在城市甲運(yùn)至城市乙,已知從城市甲到城市乙只有兩條公路,且運(yùn)費(fèi)由廠商承擔(dān).若廠商恰能在約定日期(××日)將牛奶送到,則城市乙的銷售商一次性支付給牛奶廠20萬(wàn)元;若在約定日期前送到,每提前一天銷售商將多支付給牛奶廠1萬(wàn)元;若在約定日期后送到,每遲到一天銷售商將少支付給牛奶廠1萬(wàn)元.為保證牛奶新鮮度,汽車只能在約定日期的前兩天出發(fā),且只能選擇其中的一條公路運(yùn)送牛奶,已知下表內(nèi)的信息:

統(tǒng)計(jì)信息
行駛路線

在不堵車的情況下到達(dá)城市乙所需時(shí)間(天)

在堵車的情況下到達(dá)城市乙所需時(shí)間(天)

堵車的概率

運(yùn)費(fèi)(萬(wàn)元)

公路1

2

3


16

公路2

1

4


08

1)記汽車選擇公路1運(yùn)送牛奶時(shí)牛奶廠獲得的毛收入為(單位:萬(wàn)元),求的分布列和數(shù)學(xué)期望;

2)如果你是牛奶廠的決策者,你選擇哪條公路運(yùn)送牛奶有可能讓牛奶廠獲得的毛收入更多?

(注:毛收入=銷售商支付給牛奶廠的費(fèi)用-運(yùn)費(fèi))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)生產(chǎn)的產(chǎn)品具有60個(gè)月的時(shí)效性,在時(shí)效期內(nèi),企業(yè)投入50萬(wàn)元經(jīng)銷該產(chǎn)品,為了獲得更多的利潤(rùn),企業(yè)將每月獲得利潤(rùn)的10%再投入到次月的經(jīng)營(yíng)中,市場(chǎng)調(diào)研表明,該企業(yè)在經(jīng)銷這個(gè)產(chǎn)品的第個(gè)月的利潤(rùn)是(單位:萬(wàn)元),記第個(gè)月的當(dāng)月利潤(rùn)率為,例.

1)求第個(gè)月的當(dāng)月利潤(rùn)率;

2)求該企業(yè)在經(jīng)銷此產(chǎn)品期間,哪一個(gè)月的當(dāng)月利潤(rùn)率最大,并求出該月的當(dāng)月利潤(rùn)率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)兩點(diǎn)在拋物線上,AB的垂直平分線,

1)當(dāng)且僅當(dāng)取何值時(shí),直線經(jīng)過(guò)拋物線的焦點(diǎn)F?證明你的結(jié)論;

2)若,弦AB是否過(guò)定點(diǎn),若過(guò)定點(diǎn),求出該定點(diǎn),若不過(guò)定點(diǎn),說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案