【題目】已知拋物線,過(guò)焦點(diǎn)作垂直于軸的直線,與拋物線相交于,兩點(diǎn),為的準(zhǔn)線上一點(diǎn),且的面積為4.
(1)求拋物線的標(biāo)準(zhǔn)方程.
(2)設(shè),若點(diǎn)是拋物線上的任一動(dòng)點(diǎn),則是否存在垂直于軸的定直線被以為直徑的圓截得的弦長(zhǎng)為定值?如果存在,求出該直線方程和弦長(zhǎng),如果不存在,說(shuō)明理由.
【答案】(1);(2)存在,直線方程為,弦長(zhǎng)為2.
【解析】
(1)由,可求出,即可得到拋物線的標(biāo)準(zhǔn)方程;(2)設(shè)存在直線:滿足條件,,從而可表示出以為直徑的圓的半徑和圓心,及圓心到直線的距離,則圓的弦長(zhǎng)為,列出對(duì)應(yīng)的表達(dá)式即可得到當(dāng)時(shí),弦長(zhǎng)為定值。
解:(1)易得.
所以.
(2)設(shè)存在直線:滿足條件,
則的中點(diǎn),
因此以為直徑的圓的半徑
點(diǎn)到直線的距離
所截弦長(zhǎng)為
要使弦長(zhǎng)與變量無(wú)關(guān),則令即時(shí),弦長(zhǎng)為定值2,
這時(shí)直線方程為.
故存在垂直于軸的定直線,被以為直徑的圓截得的弦長(zhǎng)為2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某漁船在航行中不幸遇險(xiǎn),發(fā)出求救信號(hào),我海軍艦艇在A處獲悉后,立即測(cè)出該漁船在方位角為45°、距離A為10海里的C處,并測(cè)得漁船正沿方位角105°的方向,以9海里/時(shí)的速度向某小島B靠攏,我海軍艦艇立即以21海里/時(shí)的速度前去營(yíng)救,恰在小島B處追上漁船.
(1)試問(wèn)艦艇應(yīng)按照怎樣的航向前進(jìn)?
(2)求出艦艇靠近漁船所用的時(shí)間?
(參考數(shù)據(jù):)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)生產(chǎn)一種產(chǎn)品,根據(jù)經(jīng)驗(yàn),其次品率Q與日產(chǎn)量x(萬(wàn)件)之間滿足關(guān)系, ,已知每生產(chǎn)1萬(wàn)件合格的產(chǎn)品盈利2萬(wàn)元,但每生產(chǎn)1萬(wàn)件次品將虧損1萬(wàn)元(注:次品率=次品數(shù)/生產(chǎn)量, 如表示每生產(chǎn)10件產(chǎn)品,有1件次品,其余為合格品).
(1)試將生產(chǎn)這種產(chǎn)品每天的盈利額(萬(wàn)元)表示為日產(chǎn)量x(萬(wàn)件)的函數(shù);
(2)當(dāng)日產(chǎn)量為多少時(shí),可獲得最大利潤(rùn)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在三棱錐中,,G為的重心,過(guò)點(diǎn)G作三棱錐的一個(gè)截面,使截面平行于直線PB和AC,則截面的周長(zhǎng)為_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】研究變量得到一組樣本數(shù)據(jù),進(jìn)行回歸分析,有以下結(jié)論
①殘差圖中殘差點(diǎn)所在的水平帶狀區(qū)域越窄,則回歸方程的預(yù)報(bào)精確度越高;
②用相關(guān)指數(shù)來(lái)刻畫回歸效果,越小說(shuō)明擬合效果越好;
③在回歸直線方程中,當(dāng)變量每增加1個(gè)單位時(shí),變量就增加2個(gè)單位
④若變量和之間的相關(guān)系數(shù)為,則變量和之間的負(fù)相關(guān)很強(qiáng)
以上正確說(shuō)法的個(gè)數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某小組共有五位同學(xué),他們的身高(單位:米)以及體重指標(biāo)(單位:千克/米2)
如下表所示:
A | B | C | D | E | |
身高 | 1.69 | 1.73 | 1.75 | 1.79 | 1.82 |
體重指標(biāo) | 19.2 | 25.1 | 18.5 | 23.3 | 20.9 |
(Ⅰ)從該小組身高低于的同學(xué)中任選人,求選到的人身高都在以下的概率
(Ⅱ)從該小組同學(xué)中任選人,求選到的人的身高都在以上且體重指標(biāo)都在中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,A是橢圓的左頂點(diǎn),點(diǎn)P,Q在橢圓上且均在x軸上方.
(1)若直線AP與OP垂直,求點(diǎn)P的坐標(biāo);
(2)若直線AP,AQ的斜率之積為,求直線PQ的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四面體ABCD的三組對(duì)棱的長(zhǎng)分別相等,依次為3,4,x,則x的取值范圍是
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com