【題目】在平面直角坐標系中,已知直線的參數(shù)方程為(是參數(shù)),以原點為極點,軸的非負半軸
為極軸,建立極坐標系,曲線的極坐標方程為.
(Ⅰ)求直線的普通方程與曲線的直角坐標方程;
(Ⅱ)設(shè)點在曲線上,曲線在點處的切線與直線垂直,求點的直角坐標.
【答案】(Ⅰ),;(Ⅱ)或
【解析】
(Ⅰ)根據(jù)直線參數(shù)方程消去參數(shù),即可求出直線普通方程;根據(jù)極坐標與直角坐標的互化公式,即可求出直角坐標方程;
(Ⅱ)設(shè)點,根據(jù)題意,得到,再由點在曲線:上,列出方程組,求解,即可得出結(jié)果.
(Ⅰ)由消去參數(shù),得,即,
所以直線的普通方程是.
由,得,
根據(jù)公式得,所以曲線的直角坐標方程是.
(Ⅱ)對于直線的參數(shù)方程為(是參數(shù)),因為,所以直線的斜率是.
因為曲線在處的切線與直線垂直,又曲線在處的切線與垂直,
所以直線與直線平行.
所以直線與直線的斜率相等.所以直線的斜率.
設(shè)點,則,整理得.
又因為點在曲線:上,
所以其坐標必然滿足曲線的方程:,代入得.
聯(lián)立解得或.
所以點的直角坐標為或
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前項和滿足(,為常數(shù),,且),,,若存在正整數(shù),使得成立;數(shù)列是首項為2,公差為的等差數(shù)列,為其前項和,則以下結(jié)論正確的是( )
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知過點的曲線的方程為.
(Ⅰ)求曲線的標準方程:
(Ⅱ)已知點,為直線上任意一點,過作的垂線交曲線于點,.
(。┳C明:平分線段(其中為坐標原點);
(ⅱ)求最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)x2+ax+lnx(a∈R)
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若f(x)存在兩個極值點x1,x2且|x1﹣x2|,求|f(x1)﹣f(x2)|的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,已知直線的參數(shù)方程為(是參數(shù)),以原點為極點,軸的非負半軸
為極軸,建立極坐標系,曲線的極坐標方程為.
(Ⅰ)求直線的普通方程與曲線的直角坐標方程;
(Ⅱ)設(shè)點在曲線上,曲線在點處的切線與直線垂直,求點的直角坐標.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校從2011年到2018年參加“北約”“華約”考試而獲得加分的學(xué)生(每位學(xué)生只能參加“北約”“華約”中的一種考試)人數(shù)可以通過以下表格反映出來.(為了方便計算,將2011年編號為1,2012年編號為2,依此類推)
年份 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
人數(shù) | 2 | 3 | 4 | 4 | 7 | 7 | 6 | 6 |
(1)求這八年來,該校參加“北約”“華約”考試而獲得加分的學(xué)生人數(shù)的中位數(shù)和方差;
(2)根據(jù)最近五年的數(shù)據(jù),利用最小二乘法求出與之間的線性回歸方程,并依此預(yù)測該校2019年參加“北約”“華約”考試而獲得加分的學(xué)生人數(shù).(結(jié)果要求四舍五入至個位)
參考公式:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為提高產(chǎn)品質(zhì)量,某企業(yè)質(zhì)量管理部門經(jīng)常不定期地對產(chǎn)品進行抽查檢測,現(xiàn)對某條生產(chǎn)線上隨機抽取的100個產(chǎn)品進行相關(guān)數(shù)據(jù)的對比,并對每個產(chǎn)品進行綜合評分(滿分100分),將每個產(chǎn)品所得的綜合評分制成如圖所示的頻率分布直方圖.記綜合評分為80分及以上的產(chǎn)品為一等品.
(1)求圖中的值,并求綜合評分的中位數(shù);
(2)用樣本估計總體,視頻率作為概率,在該條生產(chǎn)線中隨機抽取3個產(chǎn)品,求所抽取的產(chǎn)品中一等品數(shù)的分布列和數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com