【題目】金剛石是碳原子的一種結(jié)構(gòu)晶體,屬于面心立方晶胞(晶胞是構(gòu)成晶體的最基本的幾何單元),即碳原子處在立方體的個(gè)頂點(diǎn),個(gè)面的中心,此外在立方體的對(duì)角線的處也有個(gè)碳原子,如圖所示(綠色球),碳原子都以共價(jià)鍵結(jié)合,原子排列的基本規(guī)律是每一個(gè)碳原子的周圍都有個(gè)按照正四面體分布的碳原子.設(shè)金剛石晶胞的棱長(zhǎng)為,則正四面體的棱長(zhǎng)為__________;正四面體的外接球的體積是__________

【答案】

【解析】

依題意可知,為正四面體的中心,,設(shè)利用勾股定理即可解得,從而可得正四面體的外接球的半徑,進(jìn)而可求出體積.

依題意可知,為正四面體的中心,如圖:

連接,延長(zhǎng)交平面于點(diǎn),則為△的中心,

所以設(shè),

因?yàn)?/span>,所以,

,得,

,解得,

所以正四面體的棱長(zhǎng)為.

依題意可知,正四面體的外接球的圓心為,半徑為

所以正四面體的外接球的體積是.

故答案為:;.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓,將其左、右焦點(diǎn)和短軸的兩個(gè)端點(diǎn)順次連接得到一個(gè)面積為的正方形.

1)求橢圓的方程;

2)直線與橢圓交于、兩點(diǎn)(均不在軸上),點(diǎn),若直線、的斜率成等比數(shù)列,且的面積為為坐標(biāo)原點(diǎn)),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠生產(chǎn)某種電子產(chǎn)品,每件產(chǎn)品合格的概率均為,現(xiàn)工廠為提高產(chǎn)品聲譽(yù),要求在交付用戶前每件產(chǎn)品都通過(guò)合格檢驗(yàn),已知該工廠的檢驗(yàn)儀器一次最多可檢驗(yàn)件該產(chǎn)品,且每件產(chǎn)品檢驗(yàn)合格與否相互獨(dú)立.若每件產(chǎn)品均檢驗(yàn)一次,所需檢驗(yàn)費(fèi)用較多,該工廠提出以下檢驗(yàn)方案:將產(chǎn)品每個(gè)()一組進(jìn)行分組檢驗(yàn),如果某一組產(chǎn)品檢驗(yàn)合格,則說(shuō)明該組內(nèi)產(chǎn)品均合格,若檢驗(yàn)不合格,則說(shuō)明該組內(nèi)有不合格產(chǎn)品,再對(duì)該組內(nèi)每一件產(chǎn)品單獨(dú)進(jìn)行檢驗(yàn),如此,每一組產(chǎn)品只需檢驗(yàn)一次或次.設(shè)該工廠生產(chǎn)件該產(chǎn)品,記每件產(chǎn)品的平均檢驗(yàn)次數(shù)為

1的分布列及其期望;

2)(i)試說(shuō)明,當(dāng)越大時(shí),該方案越合理,即所需平均檢驗(yàn)次數(shù)越少;

ii)當(dāng)時(shí),求使該方案最合理時(shí)的值及件該產(chǎn)品的平均檢驗(yàn)次數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是一位發(fā)燒病人的體溫記錄折線圖,下列說(shuō)法不正確的是(

A.病人在51312時(shí)的體溫是

B.病人體溫在5140時(shí)到6時(shí)下降最快

C.從體溫上看,這個(gè)病人的病情在逐漸好轉(zhuǎn)

D.病人體溫在51518時(shí)開(kāi)始逐漸穩(wěn)定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于函數(shù)有下述四個(gè)結(jié)論:

①函數(shù)的圖象把圓的面積兩等分

是周期為的函數(shù)

③函數(shù)在區(qū)間上有3個(gè)零點(diǎn)

④函數(shù)在區(qū)間上單調(diào)遞減

其中所有正確結(jié)論的編號(hào)是(

A.①③④B.②④C.①④D.①③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在上任意一點(diǎn)處的切線,若過(guò)右焦點(diǎn)的直線交橢圓兩點(diǎn),已知在點(diǎn)處切線相交于.

(Ⅰ)求點(diǎn)的軌跡方程;

(Ⅱ)①若過(guò)點(diǎn)且與直線垂直的直線(斜率存在且不為零)交橢圓兩點(diǎn),證明為定值.

②四邊形的面積是否有最小值,若有請(qǐng)求出最小值;若沒(méi)有請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】廠家在產(chǎn)品出廠前,需對(duì)產(chǎn)品做檢驗(yàn),廠家將一批產(chǎn)品發(fā)給商家時(shí),商家按合同規(guī)定也需隨機(jī)抽取一定數(shù)量的產(chǎn)品做檢驗(yàn),以決定是否接收這批產(chǎn)品.

1)若廠家?guī)旆恐校ㄒ暈閿?shù)量足夠多)的每件產(chǎn)品合格的概率為 從中任意取出 3件進(jìn)行檢驗(yàn),求至少有 件是合格品的概率;

2)若廠家發(fā)給商家 件產(chǎn)品,其中有不合格,按合同規(guī)定 商家從這 件產(chǎn)品中任取件,都進(jìn)行檢驗(yàn),只有 件都合格時(shí)才接收這批產(chǎn)品,否則拒收.求該商家可能檢驗(yàn)出的不合格產(chǎn)品的件數(shù)ξ的分布列,并求該商家拒收這批產(chǎn)品的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,直線將矩形紙分為兩個(gè)直角梯形,將梯形沿邊翻折,如圖2,在翻折的過(guò)程中(平面和平面不重合),下面說(shuō)法正確的是

圖1 圖2

A.存在某一位置,使得平面

B.存在某一位置,使得平面

C.在翻折的過(guò)程中,平面恒成立

D.在翻折的過(guò)程中,平面恒成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地為鼓勵(lì)群眾參與全民讀書活動(dòng),增加參與讀書的趣味性.主辦方設(shè)計(jì)這樣一個(gè)小游戲:參與者拋擲一枚質(zhì)地均勻的骰子(正方體,六個(gè)面上分別標(biāo)注12,34,5,6六個(gè)數(shù)字).若朝上的點(diǎn)數(shù)為偶數(shù).則繼續(xù)拋擲一次.若朝上的點(diǎn)數(shù)為奇數(shù),則停止游戲,照這樣的規(guī)則進(jìn)行,最多允許拋擲3.每位參與者只能參加一次游戲.

1)求游戲結(jié)束時(shí)朝上點(diǎn)數(shù)之和為5的概率;

2)參與者可以選擇兩種方案:方案一:游戲結(jié)束時(shí),若朝上的點(diǎn)數(shù)之和為偶數(shù),獎(jiǎng)勵(lì)3本不同的暢銷書;若朝上的點(diǎn)數(shù)之和為奇數(shù),獎(jiǎng)勵(lì)1本暢銷書.方案二:游戲結(jié)束時(shí),最后一次朝上的點(diǎn)數(shù)為偶數(shù),獎(jiǎng)勵(lì)5本不同的暢銷書,否則,無(wú)獎(jiǎng)勵(lì).試分析哪一種方案能使游戲參與者獲得更多暢銷書獎(jiǎng)勵(lì)?并說(shuō)明判斷的理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案