【題目】函數(shù)f(x)=Asin(ωx+φ) 部分圖象如圖所示.
(Ⅰ)求f(x)的最小正周期及解析式;
(Ⅱ)設(shè)g(x)=f(x)﹣cos2x,求函數(shù)g(x)在區(qū)間 上的最大值和最小值.
【答案】解:(Ⅰ)由圖可得A=1, ,所以T=π.
所以ω=2.
當(dāng) 時(shí),f(x)=1,可得 ,
因?yàn)? ,所以
所以f(x)的解析式為 .
(Ⅱ)
=
= = .
因?yàn)? ,所以 .
當(dāng) ,即 時(shí),g(x)有最大值,最大值為1;
當(dāng) ,即x=0時(shí),g(x)有最小值,最小值為
【解析】(Ⅰ)由圖可得A=1,一個(gè)周期內(nèi)最高點(diǎn)與最低點(diǎn)的橫坐標(biāo)之差的絕對(duì)值為半個(gè)周期,得最小正周期T,進(jìn)而得ω,代入最高點(diǎn)坐標(biāo)求φ,得f(x)的解析式;(Ⅱ)由(Ⅰ)知f(x)的解析式,代入求出g(x)的解析式,用兩角和的正弦公式把式中的第一項(xiàng)展開(kāi),合并,再逆用兩角差的正弦公式把式子變形為一個(gè)角的一個(gè)三角函數(shù)值,由x的范圍,得到2x﹣ 的范圍,由正弦函數(shù)的圖象得到sin(2x﹣ )的最大值和最小值.
【考點(diǎn)精析】利用三角函數(shù)的最值對(duì)題目進(jìn)行判斷即可得到答案,需要熟知函數(shù),當(dāng)時(shí),取得最小值為;當(dāng)時(shí),取得最大值為,則,,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)是定義在R上的奇函數(shù),當(dāng)x<0時(shí),f(x)=( )x .
(1)求當(dāng)x>0時(shí)f(x)的解析式;
(2)畫出函數(shù)f(x)在R上的圖象;
(3)寫出它的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地方政府準(zhǔn)備在一塊面積足夠大的荒地上建一如圖所示的一個(gè)矩形綜合性休閑廣場(chǎng),其總面積為3000平方米,其中場(chǎng)地四周(陰影部分)為通道,通道寬度均為2米,中間的三個(gè)矩形區(qū)域?qū)佋O(shè)塑膠地面作為運(yùn)動(dòng)場(chǎng)地(其中兩個(gè)小場(chǎng)地形狀相同),塑膠運(yùn)動(dòng)場(chǎng)地占地面積為S平方米.
(1)分別寫出用x表示y和S的函數(shù)關(guān)系式(寫出函數(shù)定義域);
(2)怎樣設(shè)計(jì)能使S取得最大值,最大值為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題的說(shuō)法錯(cuò)誤的是( )
A.命題“若x2﹣3x+2=0,則 x=1”的逆否命題為:“若x≠1,則x2﹣3x+2≠0”.
B.“x=1”是“x2﹣3x+2=0”的充分必要條件.
C.命題p:“?x∈R,sinx+cosx≤ ”是真命題
D.若¬(p∧q)為真命題,則p、q至少有一個(gè)為假命題.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知 與 為互相垂直的單位向量, , 且 與 的夾角為銳角,則實(shí)數(shù)λ的取值范圍是( )
A.(﹣∞,﹣2)
B.( ,+∞)
C.(﹣2, )
D.(﹣ )
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在半徑為的半圓形鐵皮上截取一塊矩形材料ABCD(點(diǎn)A、B在直徑上,點(diǎn)C、D在半圓周上),并將其卷成一個(gè)以AD為母線的圓柱體罐子的側(cè)面(不計(jì)剪裁和拼接損耗),
(1)若要求圓柱體罐子的側(cè)面積最大,應(yīng)如何截?
(2)若要求圓柱體罐子的體積最大,應(yīng)如何截?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列和滿足若為等比數(shù)列,且
(1)求和;
(2)設(shè),記數(shù)列的前項(xiàng)和為
①求;
②求正整數(shù) k,使得對(duì)任意均有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,三棱柱中,側(cè)面為菱形且, , 分別為和的中點(diǎn), , , .
(Ⅰ)證明:直線∥平面;
(Ⅱ)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐的底面是正方形,每條側(cè)棱的長(zhǎng)都是底面邊長(zhǎng)的倍,為側(cè)棱上的點(diǎn).
(1)求證:.
(2)若⊥平面,求二面角的大。
(3)在(2)的條件下,側(cè)棱SC上是否存在一點(diǎn)E,使得BE∥平面PAC?若存在,求SE∶EC的值;若不存在,試說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com