【題目】某服裝店對(duì)過(guò)去100天其實(shí)體店和網(wǎng)店的銷(xiāo)售量(單位:件)進(jìn)行了統(tǒng)計(jì),制成頻率分布直方圖如下:

1)若將上述頻率視為概率,已知該服裝店過(guò)去100天的銷(xiāo)售中,實(shí)體店和網(wǎng)店銷(xiāo)售量都不低于50件的概率為0.4,求過(guò)去100天的銷(xiāo)售中,實(shí)體店和網(wǎng)店至少有一邊銷(xiāo)售量不低于50件的天數(shù);

2)若將上述頻率視為概率,已知該服裝店實(shí)體店每天的人工成本為500元,門(mén)市成本為1200元,每售出一件利潤(rùn)為50元,求該門(mén)市一天獲利不低于800元的概率;

3)根據(jù)銷(xiāo)售量的頻率分布直方圖,求該服裝店網(wǎng)店銷(xiāo)售量中位數(shù)的估計(jì)值(精確到0.01).

【答案】164;(20.38;(3(件).

【解析】

1)現(xiàn)分別計(jì)算網(wǎng)店和實(shí)體店銷(xiāo)售量不低于件的天數(shù),再結(jié)合兩者都不低于件的天數(shù),即可求得結(jié)果;

2)先計(jì)算門(mén)店銷(xiāo)售量大于等于的天數(shù),再結(jié)合利潤(rùn)的計(jì)算公式,即可求得;

3)根據(jù)中位數(shù)的意義,即可容易求得.

1)由題意,網(wǎng)店銷(xiāo)售量不低于50件的共有

(天),

實(shí)體店銷(xiāo)售量不低于50件的天數(shù)為,

實(shí)體店和網(wǎng)店銷(xiāo)售量都不低于50件的天數(shù)為,

故實(shí)體店和網(wǎng)店至少有一邊銷(xiāo)售量不低于50件的天數(shù)為

2)由題意,設(shè)該門(mén)市一天售出x件,則獲利為,即

設(shè)該門(mén)市一天獲利不低于800元為事件A,則

故該門(mén)市一天獲利不低于800元的概率為0.38

3)因?yàn)榫W(wǎng)店銷(xiāo)售量頻率分布直方圖中,銷(xiāo)售量低于50的直方圖面積為

,

銷(xiāo)售量低于55的直方圖面積為

故網(wǎng)店銷(xiāo)售量中位數(shù)的估計(jì)值為

(件).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在所有棱長(zhǎng)都相等的三棱柱中,.

1)證明:;

2)若二面角的大小為,求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)口袋中裝有大小形狀完全相同的個(gè)乒乓球,其中1個(gè)乒乓球上標(biāo)有數(shù)字1,2個(gè)乒乓球上標(biāo)有數(shù)字2,其余個(gè)乒乓球上均標(biāo)有數(shù)字3,若從這個(gè)口袋中隨機(jī)地摸出2個(gè)乒乓球,恰有一個(gè)乒乓球上標(biāo)有數(shù)字2的概率是.

(1)求的值;

(2)從口袋中隨機(jī)地摸出2個(gè)乒乓球,設(shè)表示所摸到的2個(gè)乒乓球上所標(biāo)數(shù)字之積,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】30個(gè)個(gè)體中抽取10個(gè)個(gè)體,并將這30個(gè)個(gè)體編號(hào)00,01,29.現(xiàn)給出某隨機(jī)數(shù)表的第11行到第15行(見(jiàn)下表),如果某人選取第12行的第6列和第7列中的數(shù)作為第1個(gè)數(shù)并且由此數(shù)向右讀,則選取的前4個(gè)的號(hào)碼分別為(

9264

4607

2021

3920

7766

3817

3256

1640

5858

7766

3170

0500

2593

0545

5370

7814

2889

6628

6757

8231

1589

0062

0047

3815

5131

8186

3709

4521

6665

5325

5383

2702

9055

7196

2172

3207

1114

1384

4359

4488

A.76,63,17,00B.16,00,02,30C.17,00,02,25D.17,00,02,07

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平面四邊形為直角梯形,,,,將繞著翻折到.

1上一點(diǎn),且,當(dāng)平面時(shí),求實(shí)數(shù)的值;

2)當(dāng)平面與平面所成的銳二面角大小為時(shí),求與平面所成角的正弦.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】每年10月中上旬是小麥的最佳種植時(shí)間,但小麥的發(fā)芽會(huì)受到土壤、氣候等多方面因素的影響.某科技小組為了解晝夜溫差的大小與小麥發(fā)芽的多少之間的關(guān)系,在不同的溫差下統(tǒng)計(jì)了100顆小麥種子的發(fā)芽數(shù),得到了如下數(shù)據(jù):

溫差

8

10

11

12

13

發(fā)芽數(shù)(顆)

79

81

85

86

90

(1)請(qǐng)根據(jù)統(tǒng)計(jì)的最后三組數(shù)據(jù),求出關(guān)于的線性回歸方程;

(2)若由(1)中的線性回歸方程得到的估計(jì)值與前兩組數(shù)據(jù)的實(shí)際值誤差均不超過(guò)兩顆,則認(rèn)為線性回歸方程是可靠的,試判斷(1)中得到的線性回歸方程是否可靠;

(3)若100顆小麥種子的發(fā)芽率為顆,則記為的發(fā)芽率,當(dāng)發(fā)芽率為時(shí),平均每畝地的收益為元,某農(nóng)場(chǎng)有土地10萬(wàn)畝,小麥種植期間晝夜溫差大約為,根據(jù)(1)中得到的線性回歸方程估計(jì)該農(nóng)場(chǎng)種植小麥所獲得的收益.

附:在線性回歸方程中,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《朗讀者》是一檔文化情感類(lèi)節(jié)目,以個(gè)人成長(zhǎng)、情感體驗(yàn)、背景故事與傳世佳作相結(jié)合的方式,選用精美的文字,用最平實(shí)的情感讀出文字背后的價(jià)值,深受人們的喜愛(ài).為了了解人們對(duì)該節(jié)目的喜愛(ài)程度,某調(diào)查機(jī)構(gòu)隨機(jī)調(diào)查了,兩個(gè)城市各100名觀眾,得到下面的列聯(lián)表.

非常喜愛(ài)

喜愛(ài)

合計(jì)

城市

60

100

城市

30

合計(jì)

200

完成上表,并根據(jù)以上數(shù)據(jù),判斷是否有的把握認(rèn)為觀眾的喜愛(ài)程度與所處的城市有關(guān)?

附參考公式和數(shù)據(jù):(其中.

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,動(dòng)點(diǎn)在拋物線上運(yùn)動(dòng),點(diǎn)軸上的射影為,動(dòng)點(diǎn)滿足.

求動(dòng)點(diǎn)的軌跡的方程;

過(guò)點(diǎn)作互相垂直的直線,,分別交曲線于點(diǎn),,記,的面積分別為,問(wèn):是否為定值?若為定值,求出該定值;若不為定值,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)若的一個(gè)極值點(diǎn),判斷的單調(diào)性;

2)若有兩個(gè)極值點(diǎn),,且,證明:.

查看答案和解析>>

同步練習(xí)冊(cè)答案