【題目】已知圓的方程為x2+y2﹣6x=0,過點(diǎn)(1,2)的該圓的三條弦的長(zhǎng)a1 , a2 , a3構(gòu)成等差數(shù)列,則數(shù)列a1 , a2 , a3的公差的最大值是 .
【答案】2
【解析】解:如圖,由x2+y2﹣6x=0,得(x﹣3)2+y2=9,
∴圓心坐標(biāo)C(3,0),半徑r=3,
由圓的性質(zhì)可知,過點(diǎn)P(1,2)的該圓的弦的最大值為圓的直徑,等于6,
最小值為過P且垂直于CP的弦的弦長(zhǎng),
∵|CP|= ,
∴|AB|=2 ,
即a1=2,a3=6,
∴公差d的最大值為 .
故答案為:2.
化圓的一般方程為標(biāo)準(zhǔn)方程,求出圓心坐標(biāo)和半徑,得到最大弦長(zhǎng),再求出過P且垂直于CP的弦的弦長(zhǎng),即最小弦長(zhǎng),然后利用等差數(shù)列的通項(xiàng)公式求得公差得答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】袋中有6個(gè)編號(hào)不同的黑球和3個(gè)編號(hào)不同的白球,這9個(gè)球的大小及質(zhì)地都相同,現(xiàn)從該袋中隨機(jī)摸取3個(gè)球,則這三個(gè)球中恰有兩個(gè)黑球和一個(gè)白球的方法總數(shù)是 , 設(shè)摸取的這三個(gè)球中所含的黑球數(shù)為X,則P(X=k)取最大值時(shí),k的值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知兩條直線m,n和兩個(gè)不同平面α,β,滿足α⊥β,α∩β=l,m∥α,n⊥β,則( )
A.m∥n
B.m⊥n
C.m∥l
D.n⊥l
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角梯形ABCD中,AB⊥AD,AD∥BC,AB=BC=2AD=2,E,F(xiàn)分別為BC,CD的中點(diǎn),以A為圓心,AD為半徑的半圓分別交BA及其延長(zhǎng)線于點(diǎn)M,N,點(diǎn)P在 上運(yùn)動(dòng)(如圖).若 ,其中λ,μ∈R,則2λ﹣5μ的取值范圍是( )
A.[﹣2,2]
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=alnx+b(a,b∈R),曲線f(x)在x=1處的切線方程為x﹣y﹣1=0.
(Ⅰ)求a,b的值;
(Ⅱ)證明: ;
(Ⅲ)已知滿足xlnx=1的常數(shù)為k.令函數(shù)g(x)=mex+f(x)(其中e是自然對(duì)數(shù)的底數(shù),e=2.71828…),若x=x0是g(x)的極值點(diǎn),且g(x)≤0恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知m≠0,向量 =(m,3m),向量 =(m+1,6),集合A={x|(x﹣m2)(x+m﹣2)=0}.
(1)判斷“ ∥ ”是“| |= ”的什么條件
(2)設(shè)命題p:若 ⊥ ,則m=﹣19,命題q:若集合A的子集個(gè)數(shù)為2,則m=1,判斷p∨q,p∧q,¬q的真假,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且滿足acosB=bcosA.
(1)判斷△ABC的形狀;
(2)求sin(2A+ )﹣2cos2B的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】秦九韶是我國(guó)南宋時(shí)期的數(shù)學(xué)家,普州(現(xiàn)四川省安岳縣)人,他在所著的《數(shù)書九章》中提出的多項(xiàng)式求值的秦九韶算法,至今仍是比較先進(jìn)的算法.如圖的程序框圖給出了利用秦九韶算法求某多項(xiàng)式值的一個(gè)實(shí)例,若輸入x的值為2,則輸出的v值為( )
A.9×210﹣2
B.9×210+2
C.9×211+2
D.9×211﹣2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為 (φ為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=4sinθ
(Ⅰ)求曲線C1的普通方程和C2的直角坐標(biāo)方程;
(Ⅱ)已知曲線C3的極坐標(biāo)方程為θ=α,0<α<π,ρ∈R,點(diǎn)A是曲線C3與C1的交點(diǎn),點(diǎn)B是曲線C3與C2的交點(diǎn),且A,B均異于原點(diǎn)O,且|AB|=4 ,求實(shí)數(shù)a的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com