【題目】(本小題滿分12分)

在如圖所示的多面體中,四邊形都為矩形。

)若,證明:直線平面

)設, 分別是線段, 的中點,在線段上是否存在一點,使直線平面?請證明你的結論。

【答案】1)證明詳見解析;(2)存在,M為線段AB的中點時,直線平面.

【解析】試題分析:(1)證直線垂直平面,就是證直線垂直平面內的兩條相交直線.已經有了,那么再在平面內找一條直線與BC垂直.據題意易得, 平面ABC,所以.由此得平面.2)首先連結,取的中點O.考慮到, 分別是線段, 的中點,故在線段上取中點,易得.從而得直線平面.

試題解析:()因為四邊形都是矩形,

所以.

因為AB,AC為平面ABC內的兩條相交直線,

所以平面ABC.

因為直線平面ABC內,所以.

又由已知, 為平面內的兩條相交直線,

所以, 平面.

2)取線段AB的中點M,連接,設O的交點.

由已知,O的中點.

連接MDOE,則MD,OE分別為的中位線.

所以, ,

連接OM,從而四邊形MDEO為平行四邊形,則.

因為直線平面, 平面,

所以直線平面.

即線段AB上存在一點M(線段AB的中點),使得直線平面.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知點,圓

)設,求過點且與圓相切的直線方程.

)設,直線過點且被圓截得的弦長為,求直線的方程.

)設,直線過點,求被圓截得的線段的最短長度,并求此時的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,橢圓的離心率為,直線被橢圓截得的線段長為.

(Ⅰ)求橢圓的方程;

(Ⅱ)過原點的直線與橢圓交于,兩點(,不是橢圓的頂點),點在橢圓上,且.直線軸、軸分別交于兩點.設直線,的斜率分別為,證明存在常數(shù)使得,并求出的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知R,命題:對任意,不等式恒成立;命題:存在,使得成立.

(1)若為真命題,求的取值范圍;

(2)若為假, 為真,求的取值范圍;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在等邊△ABC中,

(1)如圖1,P,Q是BC邊上的兩點,AP=AQ,∠BAP=20°,求∠AQB的度數(shù);
(2)點P,Q是BC邊上的兩個動點(不與點B,C重合),點P在點Q的左側,且AP=AQ,點Q關于直線AC的對稱點為M,連接AM,PM.
①依題意將圖2補全;
②小茹通過觀察、實驗提出猜想:在點P,Q運動的過程中,始終有PA=PM,小茹把這個猜想與同學們進行交流,通過討論,形成了證明該猜想的幾種想法:
想法1:要證明PA=PM,只需證△APM是等邊三角形;
想法2:在BA上取一點N,使得BN=BP,要證明PA=PM,只需證△ANP≌△PCM;
想法3:將線段BP繞點B順時針旋轉60°,得到線段BK,要證PA=PM,只需證PA=CK,PM=CK…
請你參考上面的想法,幫助小茹證明PA=PM(一種方法即可).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示的程序框圖表示的算法功能是(  )

A. 計算小于100的奇數(shù)的連乘積

B. 計算從1開始的連續(xù)奇數(shù)的連乘積

C. 1開始的連續(xù)奇數(shù)的連乘積,當乘積大于或等于100,計算奇數(shù)的個數(shù)

D. 計算1×3×5×…×n100時的最小的n的值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的首項a1=a,其前n項和為Sn , 且滿足Sn+Sn1=3n2+2n+4(n≥2),若對任意的n∈N* , an<an+1恒成立,則a的取值范圍是(
A.( ,
B.(
C.( ,
D.(﹣∞,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】【2016高考山東文數(shù)】已知橢圓C:(a>b>0)的長軸長為4,焦距為2.

I)求橢圓C的方程;

()過動點M(0,m)(m>0)的直線交x軸與點N,交C于點A,P(P在第一象限),且M是線段PN的中點.過點P作x軸的垂線交C于另一點Q,延長線QM交C于點B.

(i)設直線PM、QM的斜率分別為k、k',證明為定值.

(ii)求直線AB的斜率的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從某居民區(qū)隨機抽取10個家庭,獲得第i個家庭的月收入xi(單位:千元)與月儲蓄yi(單位:千元)的數(shù)據資料,算得 =20, =184, =720.
(1)求家庭的月儲蓄y關于月收入x的線性回歸方程 ;
(2)若該居民區(qū)某家庭月收入為7千元,預測該家庭的月儲蓄.
附:回歸直線的斜率和截距的最小二乘法估計公式分別為: = =

查看答案和解析>>

同步練習冊答案