【題目】已知f(x)為二次函數(shù),且

(1)求f(x)的表達式;

(2)判斷函數(shù)在(0,+∞)上的單調(diào)性,并證明.

【答案】(1);(2)增函數(shù),證明見解析.

【解析】

(1)利用題中所給的條件,先設(shè)出函數(shù)的解析式,利用,將式子化為恒等式,利用對應(yīng)項系數(shù)相等,得到方程組,求得結(jié)果;

(2)先化簡函數(shù)解析式,利用單調(diào)性的定義,證明得到函數(shù)的單調(diào)性,得到結(jié)果.

(1)設(shè)f(x)=ax2+bx+c(a≠0),

由條件得:a(x+1)2+b(x+1)+c+a(x﹣1)2+b(x﹣1)+c=2x2﹣4x,

從而, 解得:,

所以f(x)=x2﹣2x﹣1;

(2)函數(shù)g(x)=在(0,+∞)上單調(diào)遞增.

理由如下:g(x)==,

設(shè)設(shè)任意x1,x2(0,+∞),且x1<x2,

g(x1)﹣g(x2)=﹣()=(x1﹣x2)(1+),

x1,x2(0,+∞),且x1<x2,

x1﹣x2<0,1+>0,

g(x1)﹣g(x2)<0,即g(x1)<g(x2),

所以函數(shù)g(x)=在(0,+∞)上單調(diào)遞增

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中,角、所對的邊分別為、、.已知.

(1)求;

(2)若,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在多面體底面是梯形,四邊形是正方形,,,

(1)求證平面平面;

(2)設(shè)為線段上一點,求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地某路無人駕駛公交車發(fā)車時間間隔(單位:分鐘)滿足.經(jīng)測算,該路無人駕駛公交車載客量與發(fā)車時間間隔滿足:,其中

1)求,并說明的實際意義;

2)若該路公交車每分鐘的凈收益(元),問當發(fā)車時間間隔為多少時,該路公交車每分鐘的凈收益最大?并求每分鐘的最大凈收益.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國古代儒家要求學(xué)生掌握六種基本才藝:禮、樂、射、御、書、數(shù),簡稱“六藝”,某高中學(xué)校為弘揚“六藝”的傳統(tǒng)文化,分別進行了主題為“禮、樂、射、御、書、數(shù)”六場傳統(tǒng)文化知識競賽,現(xiàn)有甲、乙、丙三位選手進入了前三名的最后角逐,規(guī)定:每場知識競賽前三名的得分都分別為;選手最后得分為各場得分之和,在六場比賽后,已知甲最后得分為分,乙和丙最后得分都是分,且乙在其中一場比賽中獲得第一名,下列說法正確的是( )

A. 乙有四場比賽獲得第三名

B. 每場比賽第一名得分

C. 甲可能有一場比賽獲得第二名

D. 丙可能有一場比賽獲得第一名

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在多面體底面是梯形,四邊形是正方形,,..

(1)求證平面平面;

(2)設(shè)為線段上一點,試問在線段上是否存在一點,使得平面,若存在試指出點的位置;若不存在,說明理由?

(3)(2)的條件下,求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐中,底面為平行四邊形,點、分別在、.

1)若,求證:平面平面;

2)若滿足,則點滿足什么條件時,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了鼓勵節(jié)約用電,遼寧省實行階梯電價制度,其中每戶的用電單價與戶年用電量的關(guān)系如下表所示.

分檔

戶年用電量(度)

用電單價(元/度)

第一階梯

0.5

第二階梯

0.55

第三階梯

0.80

記用戶年用電量為度時應(yīng)繳納的電費為.

1)寫出的解析式;

2)假設(shè)居住在沈陽的范偉一家2018年共用電3000度,則范偉一家2018年應(yīng)繳納電費多少元?

3)居住在大連的張莉一家在2018年共繳納電費1942元,則張莉一家在2018年用了多少度電?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018年1月31日晚上月全食的過程分為初虧、食既、食甚、生光、復(fù)圓五個階段,月食的初虧發(fā)生在19時48分,20時51分食既,食甚時刻為21時31分,22時08分生光,直至23時12分復(fù)圓.全食伴隨有藍月亮和紅月亮,全食階段的“紅月亮”將在食甚時刻開始,生光時刻結(jié)東,一市民準備在19:55至21:56之間的某個時刻欣賞月全食,則他等待“紅月亮”的時間不超過30分鐘的概率是( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案