【題目】如圖,在等腰中,斜邊,為直角邊上的一點(diǎn),將沿直線折疊至的位置,使得點(diǎn)在平面外,且點(diǎn)在平面上的射影在線段上設(shè),則的取值范圍是( )

A. B. C. D.

【答案】B

【解析】

推導(dǎo)出ACBC=1,∠ACB=90°,AC1AC=1,CDC1D(0,1),∠AC1D=90°,CH⊥平面ABC,從而AHAC1=1,當(dāng)CD=1時,BD重合,AH,當(dāng)CD<1時,AH,由此能求出x的取值范圍.

解:∵在等腰Rt△ABC中,斜邊AB,D為直角邊BC上的一點(diǎn),

ACBC=1,∠ACB=90°,

將△ACD沿直AD折疊至△AC1D的位置,使得點(diǎn)C1在平面ABD外,

且點(diǎn)C1在平面ABD上的射影H在線段AB上,設(shè)AHx,

AC1AC=1,CDC1D(0,1),∠AC1D=90°,

CH⊥平面ABC

AHAC1=1,故排除選項A和選項C;

當(dāng)CD=1時,BD重合,AH,

當(dāng)CD<1時,AH

D為直角邊BC上的一點(diǎn),

CD(0,1),∴x的取值范圍是(,1).

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】很多關(guān)于整數(shù)規(guī)律的猜想都通俗易懂,吸引了大量的數(shù)學(xué)家和數(shù)學(xué)愛好者,有些猜想已經(jīng)被數(shù)學(xué)家證明,如“費(fèi)馬大定理”,但大多猜想還未被證明,如“哥德巴赫猜想”、“角谷猜想”.“角谷猜想”的內(nèi)容是:對于每一個正整數(shù),如果它是奇數(shù),則將它乘以再加1;如果它是偶數(shù),則將它除以;如此循環(huán),最終都能夠得到.下圖為研究“角谷猜想”的一個程序框圖.若輸入的值為,則輸出i的值為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線C的方程為,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為.

1)求直線l的直角坐標(biāo)方程和曲線C的參數(shù)方程;

2)已知P、Q兩點(diǎn)分別是曲線C和直線l上的動點(diǎn),且直線的傾斜角為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某超市2018年12個月的收入與支出數(shù)據(jù)的折線圖如圖所示:

根據(jù)該折線圖可知,下列說法錯誤的是( )

A. 該超市2018年的12個月中的7月份的收益最高

B. 該超市2018年的12個月中的4月份的收益最低

C. 該超市2018年1-6月份的總收益低于2018年7-12月份的總收益

D. 該超市2018年7-12月份的總收益比2018年1-6月份的總收益增長了90萬元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓E經(jīng)過點(diǎn),且離心率.

1)求橢圓E的方程;

2)設(shè)橢圓E的右頂點(diǎn)為A,若直線與橢圓E相交于MN兩點(diǎn)(異于A點(diǎn)),且滿足,試證明直線l經(jīng)過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)當(dāng)時,證明:上恒成立;

2)若函數(shù)有唯一零點(diǎn),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“干支紀(jì)年法”是中國歷法自古以來就使用的紀(jì)年方法,甲、乙、丙、丁、戊、已、庚、辛、壬、癸為十天干;子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥為十二地支.“干支紀(jì)年法”是以一個天干和一個地支按上述順序相配排列起來,天干在前,地支在后,已知2017年是丁酉年,2018年是戊戌年,2019年是已亥年,依此類推,則2080年是____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,點(diǎn)在橢圓上,焦點(diǎn)為,圓O的直徑為

1)求橢圓C及圓O的標(biāo)準(zhǔn)方程;

2)設(shè)直線l與圓O相切于第一象限內(nèi)的點(diǎn)P,且直線l與橢圓C交于兩點(diǎn).記 的面積為,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三個校區(qū)分別位于扇形OAB的三個頂點(diǎn)上,點(diǎn)Q是弧AB的中點(diǎn),現(xiàn)欲在線段OQ上找一處開挖工作坑P(不與點(diǎn)O,Q重合),為小區(qū)鋪設(shè)三條地下電纜管線PO,PA,PB,已知OA=2千米,∠AOB=,記∠APQ=θrad,地下電纜管線的總長度為y千米.

(1)將y表示成θ的函數(shù),并寫出θ的范圍;

(2)請確定工作坑P的位置,使地下電纜管線的總長度最。

查看答案和解析>>

同步練習(xí)冊答案