【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知極坐標(biāo)系的極點在平面直角坐標(biāo)系的原點處,極軸與軸的正半軸重合,且長度單位相同;曲線 的方程是,直線的參數(shù)方程為(為參數(shù),),設(shè), 直線與曲線交于 兩點.
(1)當(dāng)時,求的長度;
(2)求的取值范圍.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,動圓與圓外切,且與直線相切,該動圓圓心的軌跡為曲線.
(1)求曲線的方程
(2)過點的直線與拋物線相交于兩點,拋物線在點A的切線與交于點N,求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校共有學(xué)生2000人,其中男生1100人,女生900人為了調(diào)查該校學(xué)生每周平均課外閱讀時間,采用分層抽樣的方法收集該校100名學(xué)生每周平均課外閱讀時間(單位:小時)
(1)應(yīng)抽查男生與女生各多少人?
(2)如圖,根據(jù)收集100人的樣本數(shù)據(jù),得到學(xué)生每周平均課外閱讀時間的頻率分布直方圖,其中樣本數(shù)據(jù)分組區(qū)間為.若在樣本數(shù)據(jù)中有38名女學(xué)生平均每周課外閱讀時間超過2小時,請完成每周平均課外閱讀時間與性別的列聯(lián)表,并判斷是否有95%的把握認為“該校學(xué)生的每周平均課外閱讀時間與性別有關(guān)”.
男生 | 女生 | 總計 | |
每周平均課外閱讀時間不超過2小時 | |||
每周平均課外閱讀時間超過2小時 | |||
總計 |
附:
0.100 | 0.050 | 0.010 | 0.005 | |
2.706 | 3.841 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系上放置一個邊長為1的正方形,此正方形沿軸滾動(向左或者向右均可),滾動開始時,點在原點處,例如:向右滾動時,點的軌跡起初時以點為圓心,1為半徑的圓弧,然后以點與軸交點為圓心,長度為半徑……,設(shè)點的縱坐標(biāo)與橫坐標(biāo)的函數(shù)關(guān)系式是,該函數(shù)相鄰兩個零點之間的距離為.
(1)寫出的值,并求出當(dāng)時,點軌跡與軸所圍成的圖形的面積,研究該函數(shù)的性質(zhì)并填寫下面的表格:
函數(shù)性質(zhì) | 結(jié)論 | |
奇偶性 | ||
單調(diào)性 | 遞增區(qū)間 | |
遞減區(qū)間 | ||
零點 |
(2)已知方程在區(qū)間上有11個根,求實數(shù)的取值范圍
(3)寫出函數(shù)的表達式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,直線過定點A(1,0).
(Ⅰ)若與圓相切,求的方程;
(Ⅱ)若與圓相交于P,Q兩點,線段PQ的中點為M,又與的交點為N,求證: 為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐P﹣ABCD 中,△PAD 為等邊三角形,底面ABCD為等腰梯形,滿足AB∥CD,AD=DCAB=2,且平面PAD⊥平面ABCD.
(1)證明:BD⊥平面PAD
(2)求點C到平面PBD的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x﹣1|,關(guān)于x的不等式f(x)<3﹣|2x+1|的解集記為A.
(1)求A;
(2)已知a,b∈A,求證:f(ab)>f(a)﹣f(b).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com