【題目】(2017·黃岡質(zhì)檢)設(shè)等比數(shù)列{an}的各項均為正數(shù),公比為q,前n項和為Sn.若對任意的n∈N*,有S2n<3Sn,則q的取值范圍是(  )

A. (0,1] B. (0,2)

C. [1,2) D. (0, )

【答案】A

【解析】q≠1時,S2n3Sn,qn2.q1,則nlogq2對任意的nN*恒成立,顯然不成立.若0q1,則nlogq2對任意的nN*恒成立,logq2nmin,logq21,即0q2,又0q10q1.q1時,對任意的nN*,有S2n3Sn成立.綜上可得,0q≤1.故選A.

點睛:數(shù)列中恒成立問題,與函數(shù)恒成立問題一樣可轉(zhuǎn)化為最值問題,即恒成立 , 恒成立 .

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】2017年,世界乒乓球錦標賽在德國的杜賽爾多夫舉行.整個比賽精彩紛呈,參賽選手展現(xiàn)出很高的競技水平,為觀眾奉獻了多場精彩對決.圖1(扇形圖)和表1是其中一場關(guān)鍵比賽的部分數(shù)據(jù)統(tǒng)計.兩位選手在此次比賽中擊球所使用的各項技術(shù)的比例統(tǒng)計如圖1.在乒乓球比賽中,接發(fā)球技術(shù)是指回接對方發(fā)球時使用的各種方法.選手乙在比賽中的接發(fā)球技術(shù)統(tǒng)計如表1,其中的前4項技術(shù)統(tǒng)稱反手技術(shù),后3項技術(shù)統(tǒng)稱為正手技術(shù).

圖1

選手乙的接發(fā)球技術(shù)統(tǒng)計表

技術(shù)

反手擰球

反手搓球

反手拉球

反手撥球

正手搓球

正手拉球

正手挑球

使用次數(shù)

20

2

2

4

12

4

1

得分率

55%

50%

0%

75%

41.7%

75%

100%

表1

(Ⅰ)觀察圖1,在兩位選手共同使用的8項技術(shù)中,差異最為顯著的是哪兩項技術(shù)?

(Ⅱ)乒乓球接發(fā)球技術(shù)中的拉球技術(shù)包括正手拉球和反手拉球.從表1統(tǒng)計的選手乙的所有拉球中任取兩次,至少抽出一次反手拉球的概率是多少?

(Ⅲ)如果僅從表1中選手乙接發(fā)球得分率的穩(wěn)定性來看(不考慮使用次數(shù)),你認為選手乙的反手技術(shù)更穩(wěn)定還是正手技術(shù)更穩(wěn)定?(結(jié)論不要求證明)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

)求曲線在點處的切線方程;

)當時,求證:函數(shù)有且僅有一個零點;

)當時,寫出函數(shù)的零點的個數(shù).(只需寫出結(jié)論)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間

(2)當時,求函數(shù)上的最小值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù), .

(Ⅰ)若,求的單調(diào)區(qū)間;

(Ⅱ)若對任意的, 都有成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點M(﹣1,0),N(1,0),曲線E上任意一點到點M的距離均是到點N的距離的倍.

(1)求曲線E的方程;

(2)已知m≠0,設(shè)直線xmy﹣1=0交曲線EA,C兩點,直線mx+ym=0交曲線EB,D兩點,若CD的斜率為﹣1時,求直線CD的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),,其中

(I)當時,求曲線在點處的切線方程;

(Ⅱ)證明: 在區(qū)間上恰有2個零點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線上的兩個動點 的橫坐標,線段的中點坐標為,直線與線段的垂直平分線相交于點.

1)求點的坐標;

(2)求的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】長方形中, , 中點(圖1).將沿折起,使得(圖2)在圖2中:

(1)求證:平面 平面;

(2)在線段上是否存點,使得二面角為大小為說明理由

查看答案和解析>>

同步練習冊答案