【題目】如圖,設(shè)雙曲線的上焦點為,上頂點為,點為雙曲線虛軸的左端點,已知的離心率為,且的面積.

(1)求雙曲線的方程;

(2)設(shè)拋物線的頂點在坐標(biāo)原點,焦點為,動直線相切于點,與的準(zhǔn)線相交于點,試推斷以線段為直徑的圓是否恒經(jīng)過軸上的某個定點?若是,求出定點的坐標(biāo);若不是,請說明理由.

【答案】(1)(2)以為直徑的圓恒經(jīng)過軸上的定點.

【解析】試題分析:(1)由離心率得,再由的面積,解方程組得.(2)先轉(zhuǎn)化條件為恒等式問題:存在定點滿足題設(shè)條件,則對任意點恒成立,再設(shè)點,根據(jù)條件求出,利用向量數(shù)量積得對任意實數(shù)恒成立,最后根據(jù)恒等式得,解出定點的坐標(biāo).

試題解析:解:(1)由已知,即,則,即,得,

,則,得.

從而, ,所以雙曲線的方程為.

(2)由題設(shè),拋物線的方程為,準(zhǔn)線方程為,

,得,設(shè)點,則直線的方程為,

,聯(lián)立,得

假設(shè)存在定點滿足題設(shè)條件,則對任意點恒成立,

因為, ,則

對任意實數(shù)恒成立,

所以,即,故以為直徑的圓恒經(jīng)過軸上的定點.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

(Ⅰ)當(dāng)時,求曲線在點處的切線方程;

(Ⅱ)設(shè),若對任意的,存在使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2sin(2x﹣ ),x∈R.

(1)在給定的平面直角坐標(biāo)系中,畫函數(shù)f(x)=2sin(2x﹣ ),x∈[0,π]的簡圖;
(2)求f(x)=2sin(2x﹣ ),x∈[﹣π,0]的單調(diào)增區(qū)間;
(3)函數(shù)g(x)=2cos2x的圖象只經(jīng)過怎樣的平移變換就可得到f(x)=2sin(2x﹣ ),x∈R的圖象?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】用長14.8 m的鋼條制作一個長方體容器的框架,如果所制的底面的一邊比另一邊長0.5 m那么容器的最大容積為________m3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于維向量,若對任意均有,則稱向量. 對于兩個向量定義.

(1)若, 求的值;

(2)現(xiàn)有一個向量序列: 且滿足: ,求證:該序列中不存在向量.

(3) 現(xiàn)有一個向量序列: 且滿足: ,若存在正整數(shù)使得向量序列中的項,求出所有的.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在等比數(shù)列中,已知,且成等差數(shù)列.

(1)求數(shù)列的通項公式;

(2)求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求上的最大值和最小值;

(2)設(shè)曲線軸正半軸的交點為處的切線方程為,求證:對于任意的正實數(shù),都有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線,圓,圓心到拋物線準(zhǔn)線的距離為3,點是拋物線在第一象限上的點,過點作圓的兩條切線,分別與軸交于兩點.

(1)求拋物線的方程;

(2)求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知F1,F2為橢圓C: 的左右焦點,點為其上一點,且有.

(1)求橢圓C的標(biāo)準(zhǔn)方程;

(2)圓O是以F1,F2為直徑的圓,直線l: y =k x + m與圓O相切,并與橢圓C交于不同的兩點A,B,若,求k的值.

查看答案和解析>>

同步練習(xí)冊答案