【題目】已知向量 =(sin ,sin ), =(cos ,cos ),且向量 與向量 共線.
(1)求證:sin( )=0;
(2)若記函數(shù)f(x)=sin( ),求函數(shù)f(x)的對(duì)稱軸方程;
(3)求f(1)+f(2)+f(3)+…+f(2013)的值;
(4)如果已知角0<A<B<π,且A+B+C=π,滿足f( )=f( )= ,求 的值.

【答案】
(1)證明:∵向量 與向量 共線,

∴sin cos ﹣sin cos =0,即sin( )=0


(2)解:由 (k∈Z)得,

∴函數(shù)f(x)的對(duì)稱軸方程是


(3)由f(x)=sin( )得,函數(shù)f(x)的周期T= =4,

則f(1)+f(2)+f(3)+f(4)= =0,

∴f(1)+f(2)+f(3)+…+f(2013)=503×[f(1)+f(2)+f(3)+f(4)]+ =


(4)由f( )=f( )= 得,

∵0<A<B<π,∴ ,

, ,

解得,A= ,B= ,

由A+B+C=π得,C= ,

=2sin( )=


【解析】(1)根據(jù)向量共線的條件和兩角差的正弦公式化簡(jiǎn)即可;(2)根據(jù)正弦函數(shù)的對(duì)稱軸得: (k∈Z),再求出x的式子得函數(shù)f(x)的對(duì)稱軸方程;(3)先由周期公式求出函數(shù)的周期,再求出一個(gè)周期內(nèi)的函數(shù)值的和,然后判斷出式子中共有多少個(gè)周期,再求出式子的值;(4)把條件代入解析式化簡(jiǎn)后,根據(jù)角的范圍求出A、B的值,再求出C的值,代入式子根據(jù)兩角和的正弦公式化簡(jiǎn)求值.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解兩角和與差的正弦公式的相關(guān)知識(shí),掌握兩角和與差的正弦公式:,以及對(duì)正弦函數(shù)的對(duì)稱性的理解,了解正弦函數(shù)的對(duì)稱性:對(duì)稱中心;對(duì)稱軸

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,已知點(diǎn),曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,點(diǎn)的極坐標(biāo)為,直線的極坐標(biāo)方程為,且過(guò)點(diǎn);過(guò)點(diǎn)與直線平行的直線為, 與曲線相交于兩點(diǎn).

(1)求曲線上的點(diǎn)到直線距離的最小值;

(2)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某種產(chǎn)品的質(zhì)量以其質(zhì)量指標(biāo)值衡量,并依據(jù)質(zhì)量指標(biāo)值劃分等極如下表:

質(zhì)量指標(biāo)值

等級(jí)

三等品

二等品

一等品

從某企業(yè)生產(chǎn)的這種產(chǎn)品中抽取200件,檢測(cè)后得到如下的頻率分布直方圖:

(1)根據(jù)以上抽樣調(diào)查數(shù)據(jù) ,能否認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品符合“一、二等品至少要占全部產(chǎn)品90%”的規(guī)定?

(2)在樣本中,按產(chǎn)品等極用分層抽樣的方法抽取8件,再?gòu)倪@8件產(chǎn)品中隨機(jī)抽取4件,求抽取的4件產(chǎn)品中,一、二、三等品都有的概率;

(3)該企業(yè)為提高產(chǎn)品質(zhì)量,開(kāi)展了“質(zhì)量提升月”活動(dòng),活動(dòng)后再抽樣檢測(cè),產(chǎn)品質(zhì)量指標(biāo)值近似滿足,則“質(zhì)量提升月”活動(dòng)后的質(zhì)量指標(biāo)值的均值比活動(dòng)前大約提升了多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,曲線 ,曲線 為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸,建立極坐標(biāo)系.

(Ⅰ)求曲線, 的極坐標(biāo)方程;

(Ⅱ)曲線 為參數(shù), , )分別交, 兩點(diǎn),當(dāng)取何值時(shí), 取得最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知平面向量 =(1,x), =(2x+3,﹣x)(x∈R).
(1)若 ,求| |
(2)若 夾角為銳角,求x的取值范圍.
(3)若| |=2,求與 垂直的單位向量 的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)A,B,C,D為平面內(nèi)的四點(diǎn),且A(1,3),B(2,﹣2),C(4,1).
(1)若 = ,求D點(diǎn)的坐標(biāo);
(2)設(shè)向量 = , = ,若k +3 平行,求實(shí)數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在等比數(shù)列{an}中,a2=3,a5=81. (Ⅰ)求an;
(Ⅱ)設(shè)bn=log3an , 求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足an=2Sn﹣1(n∈N*) (Ⅰ)求證:數(shù)列{an}為等比數(shù)列;
(Ⅱ)若bn=(2n+1)an , 求{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】節(jié)能減排以來(lái),蘭州市100戶居民的月平均用電量(單位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分組的頻率分布直方圖如圖.
(1)求直方圖中x的值;
(2)求月平均用電量的眾數(shù)和中位數(shù);
(3)估計(jì)用電量落在[220,300)中的概率是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案