【題目】已知四棱錐P﹣ABCD,其三視圖和直觀圖如圖所示,E為BC中點. (Ⅰ)求此幾何體的體積;
(Ⅱ)求證:平面PAE⊥平面PDE.
【答案】解:(Ⅰ)由三視圖可知底面ABCD為矩形,AB=2,BC=4, 定點P在面ABCD內(nèi)的射影為BC的中點E,棱錐的高為2,
∴此幾何體的體積 .
證明:(Ⅱ)∵PE⊥平面ABCD,AE平面ABCD,∴PE⊥AE,
取AD中點F,∵AB=CE=BE=2,∴ ,∴AE⊥ED,
∵ED∩AE=E,∴AE⊥平面PED,∵AE平面PAE,
∴平面PAE⊥平面PDE.
【解析】(Ⅰ)由三視圖可知底面ABCD為矩形,AB=2,BC=4,定點P在面ABCD內(nèi)的射影為BC的中點E,棱錐的高為2,由此能求出此幾何體的體積.(Ⅱ)推導(dǎo)出PE⊥AE,AE⊥ED,從而AE⊥平面PED,由此能證明平面PAE⊥平面PDE.
【考點精析】關(guān)于本題考查的平面與平面垂直的判定,需要了解一個平面過另一個平面的垂線,則這兩個平面垂直才能得出正確答案.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c.向量 =(a, b)與 =(cosA,sinB)平行.
(Ⅰ)求A;
(Ⅱ)若a= ,b=2,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C的中心在坐標(biāo)原點,焦點在x軸上,橢圓C上的點到焦點距離的最大值為3,離心率 .
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若經(jīng)過左焦點F1且傾斜角為 的直線l與橢圓交于A、B兩點,求|AB|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過△ABC所在平面α外一點P,作PO⊥α,垂足為O,連接PA,PB,PC,若點O是△ABC的內(nèi)心,則( )
A.PA=PB=PC
B.點P到AB,BC,AC的距離相等
C.PA⊥PB,PB⊥PC,PC⊥PA
D.PA,PB,PC與平面α所成的角相等
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,圓C的方程為x2+y2﹣8x+15=0,若直線y=kx﹣2上至少存在一點,使得以該點為圓心,1為半徑的圓與圓C有公共點,則k的最大值是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義平面向量之間的一種運(yùn)算“⊙”如下:對任意的 ,令 ,下面說法錯誤的是( )
A.若 與 共線,則 ⊙ =0
B. ⊙ = ⊙
C.對任意的λ∈R,有 ⊙ = ⊙ )
D.( ⊙ )2+( )2=| |2| |2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在空間幾何體A﹣BCDE中,底面BCDE是梯形,且CD∥BE,CD=2BE=4,∠CDE=60°,△ADE是邊長為2的等邊三角形,F(xiàn)為AC的中點. (Ⅰ)求證:BF∥平面ADE;
(Ⅱ)若AC=4,求證:平面ADE⊥平面BCDE;
(Ⅲ)若AC=4,求幾何體C﹣BDF的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一汽車廠生產(chǎn)三類轎車,每類轎車均有舒適型和標(biāo)準(zhǔn)型兩種型號,某月的產(chǎn)量如下表(單位:輛):
轎車 | 轎車 | 轎車 | |
舒適型 | 100 | 150 | |
標(biāo)準(zhǔn)型 | 300 | 450 | 600 |
按類用分層抽樣的方法在這個月生產(chǎn)的轎車中抽取50輛,其中有類轎車10輛.
(I)求的值;
(II)用分層抽樣的方法在類轎車中抽取一個容量為5的樣本.將該樣本看成一個總體,從中任取2輛,求至少有1輛舒適型轎車的概率;
(III)用隨機(jī)抽樣的方法從類舒適型轎車中抽取8輛,經(jīng)檢測它們的得分的值如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2,把這8輛轎車的得分看成一個總體,從中任取一個數(shù),設(shè)樣本平均數(shù)為,求的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com