【題目】4月23日是世界讀書日,為提高學生對讀書的重視,讓更多的人暢游于書海中,從而收獲更多的知識,某高中的校學生會開展了主題為“讓閱讀成為習慣,讓思考伴隨人生”的實踐活動,校學生會實踐部的同學隨即抽查了學校的40名高一學生,通過調(diào)查它們是喜愛讀紙質(zhì)書還是喜愛讀電子書,來了解在校高一學生的讀書習慣,得到如表列聯(lián)表:
喜歡讀紙質(zhì)書 | 不喜歡讀紙質(zhì)書 | 合計 | |
男 | 16 | 4 | 20 |
女 | 8 | 12 | 20 |
合計 | 24 | 16 | 40 |
(Ⅰ)根據(jù)如表,能否有99%的把握認為是否喜歡讀紙質(zhì)書籍與性別有關(guān)系?
(Ⅱ)從被抽查的16名不喜歡讀紙質(zhì)書籍的學生中隨機抽取2名學生,求抽到男生人數(shù)ξ的分布列及其數(shù)學期望E(ξ).
參考公式:K2= ,其中n=a+b+c+d.
下列的臨界值表供參考:
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:的四個頂點圍成的四邊形的面積為,原點到直線的距離為.
(1)求橢圓的方程;
(2)已知定點,是否存在過的直線,使與橢圓交于,兩點,且以為直徑的圓過橢圓的左頂點?若存在,求出的方程:若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,P(x0 , y0)是橢圓 +y2=1的上的點,l是橢圓在點P處的切線,O是坐標原點,OQ∥l與橢圓的一個交點是Q,P,Q都在x軸上方
(1)當P點坐標為( , )時,利用題后定理寫出l的方程,并驗證l確定是橢圓的切線;
(2)當點P在第一象限運動時(可以直接應用定理)
①求△OPQ的面積
②求直線PQ在y軸上的截距的取值范圍.
定理:若點(x0 , y0)在橢圓 +y2=1上,則橢圓在該點處的切線方程為 +y0y=1.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖1,在直角梯形ABCD中,AD∥BC,AB⊥BC,BD⊥DC,點E是BC邊的中點,將△ABD沿BD折起,使平面ABD⊥平面BCD,連接AE,AC,DE,得到如圖2所示的幾何體.
(Ⅰ)求證:AB⊥平面ADC;
(Ⅱ)若AD=1,二面角C﹣AB﹣D的平面角的正切值為 ,求二面角B﹣AD﹣E的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】長郡中學早上8點開始上課,若學生小典與小方勻在早上7:40至8:00之間到校,且兩人在該時間段的任何時刻到校都是等可能的,則小典比小方至少早5分鐘到校的概率為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列判斷正確的是( )
A.若事件A與事件B互斥,則事件A與事件B對立
B.函數(shù)y= (x∈R)的最小值為2
C.若直線(m+1)x+my﹣2=0與直線mx﹣2y+5=0互相垂直,則m=1
D.“p∧q為真命題”是“p∨q為真命題”的充分不必要條件
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】直線mx+ny=1與圓x2+y2=4的交點為整點(橫縱坐標均為正數(shù)的點),這樣的直線的條數(shù)是( )
A.2
B.4
C.6
D.8
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}滿足條件:a1=1,a2=r(r>0),且{anan+1}是公比為q(q>0)的等比數(shù)列,設bn=a2n﹣1+a2n(n=1,2,…).
(1)求出使不等式anan+1+an+1an+2>an+2an+3(n∈N*)成立的q的取值范圍;
(2)求bn和 ,其中Sn=b1+b2+…+bn;
(3)設r=219.2﹣1,q= ,求數(shù)列{ }的最大項和最小項的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定義在(0,+∞)上的函數(shù) ,其中a>0.設兩曲線y=f(x)與y=g(x)有公共點,且在公共點處的切線相同.則b的最大值為( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com