【題目】銷售某種活蝦,根據(jù)以往的銷售情況,按日需量x(公斤)屬于[0,100),[100,200),[200,300),[300,400),[400,500] 進(jìn)行分組,得到如圖所示的頻率分布直方圖.
這種活蝦經(jīng)銷商進(jìn)價(jià)成本為每公斤15元,當(dāng)天進(jìn)貨當(dāng)天以每公斤20元進(jìn)行銷售,當(dāng)天未售出的須全部以每公斤10元賣給冷凍庫(kù).某水產(chǎn)品經(jīng)銷商某天購(gòu)進(jìn)了300公斤這種活蝦,設(shè)當(dāng)天利潤(rùn)為Y元.
(1)求Y關(guān)于x的函數(shù)關(guān)系式;
(2)結(jié)合直方圖估計(jì)利潤(rùn)Y不小于300元的概率.
【答案】(1); (2).
【解析】
(1)根據(jù)購(gòu)進(jìn)量進(jìn)行分段,當(dāng)需求量超過(guò)時(shí),利潤(rùn)為,當(dāng)需求量不超過(guò)時(shí),用銷售量成本及虧損即可得到利潤(rùn)值的表達(dá)式.(2)由(1)可求得時(shí),,然后通過(guò)頻率分布直方圖計(jì)算的的頻率,以此作為概率.
(1)當(dāng)日需求量不低于300公斤時(shí),利潤(rùn)Y=(20-15)×300=1500元;
當(dāng)日需求量不足300公斤時(shí),利潤(rùn)Y=(20-15)x-(300-x)×5=10x-1500(元);
故Y=.
(2)由Y≥300得,180≤x≤500,
所以P(Y≥300)=P(180≤x≤200)+P(200≤x≤500)
=(0.0020×+0.0030+0.0025+0.0015) ×100=0.74.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線l的參數(shù)方程為為參數(shù),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為.
求曲線C的直角坐標(biāo)方程與直線l的極坐標(biāo)方程;
Ⅱ若直線與曲線C交于點(diǎn)不同于原點(diǎn),與直線l交于點(diǎn)B,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩位同學(xué)參加數(shù)學(xué)應(yīng)用知識(shí)競(jìng)賽培訓(xùn),現(xiàn)分別從他們?cè)谂嘤?xùn)期間參加的若干次測(cè)試成績(jī)中隨機(jī)抽取8次,記錄如下:
(Ⅰ)分別估計(jì)甲、乙兩名同學(xué)在培訓(xùn)期間所有測(cè)試成績(jī)的平均分;
(Ⅱ)從上圖中甲、乙兩名同學(xué)高于85分的成績(jī)中各選一個(gè)成績(jī)作為參考,求甲、乙兩人成績(jī)都在90分以上的概率;
(Ⅲ)現(xiàn)要從甲、乙中選派一人參加正式比賽,根據(jù)所抽取的兩組數(shù)據(jù)分析,你認(rèn)為選派哪位同學(xué)參加較為合適?說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知角α的頂點(diǎn)與原點(diǎn)重合,始邊與x軸的正半軸重合,終邊過(guò)點(diǎn)P(-2,-1).
(1)求cos(2α+)的值;
(2)若角β滿足tanβ=2,求tan(2α+β)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知向量函數(shù)的最小正周期為.
(1)求函數(shù)的單調(diào)遞增區(qū)間;
(2)在中,角的對(duì)邊分別是,且滿足,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義函數(shù)如下表,數(shù)列滿足,. 若,則( )
A. 7042 B. 7058 C. 7063 D. 7262
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】開(kāi)發(fā)商現(xiàn)有四棟樓A,B,C,D.樓D位于BC間,到樓A,B,C的距離分別為,,,且從樓D看樓A,B的視角為.如圖所示,不計(jì)樓大小和高度.
(1)試求從樓A看樓B,C視角大;
(2)開(kāi)發(fā)商為謀求更大開(kāi)發(fā)區(qū)域,擬再建三棟樓M,P,N,形成以樓AMPN為頂點(diǎn)的矩形開(kāi)發(fā)區(qū)域,規(guī)劃要求樓B,C分別位于樓MP和樓PN間,如圖所示,記,當(dāng)等于多少時(shí),矩形開(kāi)發(fā)區(qū)域面積最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】風(fēng)景秀美的寶湖畔有四棵高大的銀杏樹,記作A,B,P,Q,湖岸部分地方圍有鐵絲網(wǎng)不能靠近.欲測(cè)量P,Q兩棵樹和A,P兩棵樹之間的距離,現(xiàn)可測(cè)得A,B兩點(diǎn)間的距離為100 m,∠PAB=75°,∠QAB=45°,∠PBA=60°,∠QBA=90°,如圖所示.則P,Q兩棵樹和A,P兩棵樹之間的距離各為多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com