【題目】已知函數(shù).

(1)若,曲線在點處的切線在兩坐標(biāo)軸上的截距之和為2,求的值

(2)若對于任意的及任意的總有成立.求的取值范圍.

【答案】(1) .

(2) .

【解析】分析:(1)利用導(dǎo)數(shù)的幾何意義求出切線方程為分別令,求得在兩坐標(biāo)軸上的截距,列方程可得結(jié)果;2)等價于,構(gòu)造函數(shù),則,所以上為單調(diào)遞增函數(shù),只需,對于恒成立即可,即對于恒成立利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,可得從而可得結(jié)果.

詳解(1)因為

所以.

又因為切點坐標(biāo)為,所以切線方程為.

,得;令,得.

,化簡得.

解得,又,所以.

(2)不防設(shè),由(1)知,

所以等價于.

,所以.

設(shè),則,所以上為單調(diào)遞增函數(shù).

因此,對于恒成立.

所以對于恒成立.

設(shè),則.

所以上單調(diào)遞增,.

因此,,即

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中.

1)試討論函數(shù)的單調(diào)性;

2)若,且函數(shù)有兩個零點,求實數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題:

①對立事件一定是互斥事件;②若A,B為兩個隨機事件,則P(A∪B)=P(A)+P(B);③若事件A,B,C彼此互斥,則P(A)+P(B)+P(C)=1;④若事件A,B滿足P(A)+P(B)=1,則A與B是對立事件.

其中正確命題的個數(shù)是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C的圓心在直線l2xy0上,且與直線l1xy+10相切.

(Ⅰ)若圓C與圓x2+y22x4y760外切,試求圓C的半徑;

(Ⅱ)滿足已知條件的圓顯然不只一個,但它們都與直線l1相切,我們稱l1是這些圓的公切線.這些圓是否還有其他公切線?若有,求出公切線的方程,若沒有,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖一,在四棱錐中,底面,底面是直角梯形,為側(cè)棱上一點,且該四棱錐的俯視圖和側(cè)視圖如圖二所示.

(1)證明:平面平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大型高端制造公司為響應(yīng)《中國制造2025》中提出的堅持“創(chuàng)新驅(qū)動、質(zhì)量為先、綠色發(fā)展、結(jié)構(gòu)優(yōu)化、人才為本”的基本方針,準(zhǔn)備加大產(chǎn)品研發(fā)投資,下表是該公司2017年5~12月份研發(fā)費用(百萬元)和產(chǎn)品銷量(萬臺)的具體數(shù)據(jù):

(1)根據(jù)數(shù)據(jù)可知之間存在線性相關(guān)關(guān)系

(i)求出關(guān)于的線性回歸方程(系數(shù)精確到);

(ii)若2018年6月份研發(fā)投人為25百萬元,根據(jù)所求的線性回歸方程估計當(dāng)月產(chǎn)品的銷量;

(2)公司在2017年年終總結(jié)時準(zhǔn)備從該年8~12月份這5個月中抽取3個月的數(shù)據(jù)進行重點分析,求沒有抽到9月份數(shù)據(jù)的概率.

參考數(shù)據(jù): ,.

參考公式:對于一組數(shù)據(jù),,其回歸直線的斜率和截距的最小二乘估計分別為: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=sinωxcosωx(ω>0)的部分圖象如圖所示.

(1)求ω的值;

(2)若x∈(-,),求f(x)的值域;

(3)若方程3[f(x)]2f(x)+m=0在x∈(-,)內(nèi)有解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著我國互聯(lián)網(wǎng)信息技術(shù)的發(fā)展,網(wǎng)絡(luò)購物已經(jīng)成為許多人消費的一種重要方式,某市為了了解本市市民的網(wǎng)絡(luò)購物情況,特委托一家網(wǎng)絡(luò)公示進行了網(wǎng)絡(luò)問卷調(diào)查,并從參與調(diào)查的10000名網(wǎng)民中隨機抽取了200人進行抽樣分析,得到了下表所示數(shù)據(jù):

經(jīng)常進行網(wǎng)絡(luò)購物

偶爾或從不進行網(wǎng)絡(luò)購物

合計

男性

50

50

100

女性

60

40

100

合計

110

90

200

(1)依據(jù)上述數(shù)據(jù),能否在犯錯誤的概率不超過的前提下認為該市市民進行網(wǎng)絡(luò)購物的情況與性別有關(guān)?

(2)現(xiàn)從所抽取的女性網(wǎng)民中利用分層抽樣的方法再抽取人,從這人中隨機選出人贈送網(wǎng)絡(luò)優(yōu)惠券,求出選出的人中至少有兩人是經(jīng)常進行網(wǎng)絡(luò)購物的概率;

(3)將頻率視為概率,從該市所有的參與調(diào)查的網(wǎng)民中隨機抽取人贈送禮物,記經(jīng)常進行網(wǎng)絡(luò)購物的人數(shù)為,求的期望和方差.

附:,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在棱長為2的正方體中, , 分別是棱, , 的中點,點, 分別在棱, 上移動,且.

(1)當(dāng)時,證明:直線平面;

(2)是否存在,使面與面所成的二面角為直二面角?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案