已知函數(shù)y=x(x-1)(x+1)的圖象如圖所示,方程x(x-1)(x+1)+0.01=0在I內(nèi)恰有一實(shí)根,則I可以是

A.(-∞,-1)                 B.(-1,0)               C.(0,1)            D.(1,+∞)

答案:A  x(x-1)(x+1)+0.01=0即f(x)=-0.01有一個(gè)解時(shí),觀察圖象得區(qū)間I=(-∞,-1).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
ax
+lnx-1,a∈R

(1)若曲線y=f(x)在P(1,y0)處的切線平行于直線y=-x+1,求函數(shù)y=f(x)的單調(diào)區(qū)間;
(2)若a>0,且對(duì)x∈(0,2e]時(shí),f(x)>0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=
x
x-1
,給出下列命題:
(1)函數(shù)圖象關(guān)于點(diǎn)(1,1)對(duì)稱;
(2)函數(shù)圖象關(guān)于直線y=2-x對(duì)稱;
(3)函數(shù)在定義域內(nèi)單調(diào)遞減;
(4)將函數(shù)圖象向左平移一個(gè)單位,再向下平移一個(gè)單位后與y=
1
x
的圖象重合.
其中正確的命題是
(1)(2)(4)
(1)(2)(4)
(寫出所有正確命題的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=g(x)的圖象與f(x)=x+
1
x
的圖象關(guān)于點(diǎn)A(0,1)對(duì)稱.
(1)求y=g(x)的函數(shù)解析式;
(2)設(shè)F(x)=g(x)+
a
x
(a∈R),若對(duì)任意x∈(0,2],F(xiàn)(x)≥8恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•浦東新區(qū)三模)已知函數(shù)y=f(x),x∈D,y∈A;g(x)=x2-(4
7
tanθ)x+1,
(1)當(dāng)f(x)=sin(x+φ)為偶函數(shù)時(shí),求φ的值.
(2)當(dāng)f(x)=sin(2x+
π
6
)+
3
sin(2x+
π
3
)時(shí),g(x)在A上是單調(diào)遞減函數(shù),求θ的取值范圍.
(3)當(dāng)f(x)=m•sin(ωx+φ1)時(shí),(其中m∈R且m≠0,ω>0),函數(shù)f(x)的圖象關(guān)于點(diǎn)(
π
2
,0)對(duì)稱,又關(guān)于直線x=π成軸對(duì)稱,試探討ω應(yīng)該滿足的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=x+有如下性質(zhì):如果常數(shù)a>0,那么該函數(shù)在(0,]上是減函數(shù),在[,+∞)上是增函數(shù).

(1)如果函數(shù)y=x+(x>0)的值域?yàn)椋?,+∞),求b的值;

(2)研究函數(shù)y=x2+(常數(shù)c>0)在定義域內(nèi)的單調(diào)性,并說明理由;

(3)對(duì)函數(shù)y=x+和y=x2+(常數(shù)a>0)作出推廣,使它們都是你所推廣的函數(shù)的特例,研究推廣后的函數(shù)的單調(diào)性(只須寫出結(jié)論,不必證明),并求函數(shù)f(x)=(x2+)n+(+x)n(n是正整數(shù))在區(qū)間[,2]上的最大值和最小值(可利用你的研究結(jié)論).

查看答案和解析>>

同步練習(xí)冊(cè)答案