【題目】(導學號:05856308)(12分)
如圖,∠ABC=,O為AB上一點,3OB=3OC=2AB,PO⊥平面ABC,2DA=2AO=PO,OA=1,且DA∥PO.
(Ⅰ)求證:平面PBD⊥平面COD;
(Ⅱ)求點O到平面BDC的距離.
【答案】(1) 見解析(2)
【解析】試題分析:(1)利用勾股定理得出PD⊥OD,由OC⊥平面ABPD得出OC⊥PD,于是PD⊥平面COD,從而有平面PBD⊥平面COD;
(2)由計算可求BD,BC,CD的值,利用余弦定理可求cos∠BCD,利用同角三角函數基本關系式可求sin∠BCD的值,利用三角形面積公式可求S△BCD,S△BOC的值,利用體積相等VO﹣BCD=VD﹣BOC,即可得解點O到平面BDC的距離.
試題解析:
(Ⅰ)因為OA=1,所以PO=OB=2,DA=1.
由DA∥PO,PO⊥平面ABC,知DA⊥平面ABC,∴DA⊥AO,
從而DO=,PD=.在△PDO中,∵PO=2,∴△PDO為直角三角形,故PD⊥DO.
又∵OC=OB=2,∠ABC=,∴CO⊥AB,又PO⊥平面ABC,
∴PO⊥OC,又PO∩AB=O,∴CO⊥平面PAB,故CO⊥PD.∵CO∩DO=O,
∴PD⊥平面COD.又PD平面PBD,∴平面PBD⊥平面COD.
(Ⅱ)由計算得BD=,BC=2,CD=,所以cos∠BCD=,所以sin∠BCD=,
所以S△BCD=×2××=,
S△BOC=×2×2=2.
又VO-BCD=VD-BOC,所以××d=×1×2,解得d=,即點O到平面BDC的距離為.
科目:高中數學 來源: 題型:
【題目】(導學號:05856263)
已知拋物線y2=2px(p>0)的準線與x軸交于點N,過點N作圓M:(x-2)2+y2=1的兩條切線,切點為P、Q,且|PQ|=.
(Ⅰ)求拋物線的方程;
(Ⅱ)過拋物線的焦點F作斜率為k1的直線與拋物線交于A、B兩點,A、B兩點的橫坐標均不為2,連接AM,BM并延長分別交拋物線于C、D兩點,設直線CD的斜率為k2,問是否為定值?若是,求出該定值;若不是,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】[選修4-5:不等式選講]
已知函數f(x)=|2x+1|﹣|2x﹣3|,g(x)=|x+1|+|x﹣a|.
(l)求f(x)≥1的解集;
(2)若對任意的t∈R,s∈R,都有g(s)≥f(t).求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(1)選修4-2:矩陣與變換
求矩陣的特征值和特征向量.
(2)選修4-4:坐標系與參數方程
在極坐標系中,圓的方程為,以極點為坐標原點,極軸為軸的正半軸建立平面直角坐標系,圓的參數方程(是參數),若圓與圓相切,求實數的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(導學號:05856295)德國大數學家高斯年少成名,被譽為數學王子.19歲的高斯得到了一個數學史上非常重要的結論,就是《正十七邊形尺規(guī)作圖之理論與方法》, 在其年幼時,對1+2+3+…+100的求和運算中,提出了倒序相加法的原理,該原理基于所給數據前后對應項的和呈現(xiàn)一定的規(guī)律生成,因此,此方法也被稱為高斯算法.現(xiàn)有函數f(x)=,則f(1)+f(2)+…+f(m+2017)等于( )
A. B. C. D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某高科技企業(yè)生產產品A和產品B需要甲、乙兩種新型材料.生產一件產品A需要甲材料1.5 kg,乙材料1 kg,用5個工時;生產一件產品B需要甲材料0.5 kg,乙材料0.3 kg,用3個工時,生產一件產品A的利潤為2100元,生產一件產品B的利潤為900元.該企業(yè)現(xiàn)有甲材料150 kg,乙材料90 kg,則在不超過600個工時的條件下,生產產品A、產品B的利潤之和的最大值為______元.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(導學號:05856331)
甲、乙兩家快餐店對某日7個時段的光顧的客人人數進行統(tǒng)計并繪制莖葉圖如下圖所示(下面簡稱甲數據、乙數據),且乙數據的眾數為17,甲數據的平均數比乙數據平均數少2.
(Ⅰ)求a,b的值,并計算乙數據的方差;
(Ⅱ)現(xiàn)從乙數據中不大于16的數據中隨機抽取兩個,求至少有一個數據小于10的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知定義域為A的函數f(x),若對任意的x1,x2∈A,都有f(x1+x2)-f(x1)≤f(x2),則稱函數f(x)為“定義域上的M函數”,給出以下五個函數:
①f(x)=2x+3,x∈R;②f(x)=x2,x∈;③f(x)=x2+1,x∈;④f(x)=sin x,x∈;⑤f(x)=log2x,x∈[2,+∞).
其中是“定義域上的M函數”的有( )
A. 2個 B. 3個
C. 4個 D. 5個
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com