【題目】如圖所示,四棱錐P﹣ABCD的底面ABCD是邊長(zhǎng)為1的菱形,∠BCD=60°,E是CD的中點(diǎn),PA⊥底面ABCD,PA= .
(Ⅰ)證明:平面PBE⊥平面PAB;
(Ⅱ)求二面角A﹣BE﹣P的大。
【答案】證明:(I)如圖所示,連接BD,由ABCD是菱形且∠BCD=60°知,
△BCD是等邊三角形.因?yàn)镋是CD的中點(diǎn),所以BE⊥CD,又AB∥CD,所以BE⊥AB,
又因?yàn)镻A⊥平面ABCD,BE平面ABCD,
所以PA⊥BE,而PA∩AB=A,因此 BE⊥平面PAB.
又BE平面PBE,所以平面PBE⊥平面PAB.
解:(II)由(I)知,BE⊥平面PAB,PB平面PAB,所以PB⊥BE.
又AB⊥BE,所以∠PBA是二面角A﹣BE﹣P的平面角.
在Rt△PAB中,..
故二面角A﹣BE﹣P的大小為60°.
【解析】(I)連接BD,由已知中四棱錐P﹣ABCD的底面ABCD是邊長(zhǎng)為1的菱形,∠BCD=60°,E是CD的中點(diǎn),PA⊥底面ABCD,我們可得BE⊥AB,PA⊥BE,由線面垂直的判定定理可得BE⊥平面PAB,再由面面平行的判定定理可得平面PBE⊥平面PAB;
(II)由(I)知,BE⊥平面PAB,進(jìn)而PB⊥BE,可得∠PBA是二面角A﹣BE﹣P的平面角.解Rt△PAB即可得到二面角A﹣BE﹣P的大。
【考點(diǎn)精析】利用平面與平面垂直的判定對(duì)題目進(jìn)行判斷即可得到答案,需要熟知一個(gè)平面過(guò)另一個(gè)平面的垂線,則這兩個(gè)平面垂直.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正方體ABCD﹣A1B1C1D1中,O是底面ABCD的中心,E、F分別是CC1、AD的中點(diǎn).那么異面直線OE和FD1所成角的余弦值為
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,坐標(biāo)平面上一點(diǎn)P滿足: 的周長(zhǎng)為6,記點(diǎn)P的軌跡為.拋物線以為焦點(diǎn),頂點(diǎn)為坐標(biāo)原點(diǎn)O.
(Ⅰ)求, 的方程;
(Ⅱ)若過(guò)的直線與拋物線交于兩點(diǎn),問(wèn)在上且在直線外是否存在一點(diǎn),使直線的斜率依次成等差數(shù)列,若存在,請(qǐng)求出點(diǎn)的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知三棱柱ABC﹣A′B′C′,側(cè)棱與底面垂直,且所有的棱長(zhǎng)均為2,E為AA′的中點(diǎn),F(xiàn)為AB的中點(diǎn). (Ⅰ)求多面體ABCB′C′E的體積;
(Ⅱ)求異面直線C'E與CF所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某理財(cái)公司有兩種理財(cái)產(chǎn)品和.這兩種理財(cái)產(chǎn)品一年后盈虧的情況如下(每種理財(cái)產(chǎn)品的不同投資結(jié)果之間相互獨(dú)立):
產(chǎn)品
產(chǎn)品(其中)
(Ⅰ)已知甲、乙兩人分別選擇了產(chǎn)品和產(chǎn)品進(jìn)行投資,如果一年后他們中至少有一人獲利的概率大于,求的取值范圍;
(Ⅱ)丙要將家中閑置的10萬(wàn)元錢進(jìn)行投資,以一年后投資收益的期望值為決策依據(jù),在產(chǎn)品和產(chǎn)品之中選其一,應(yīng)選用哪個(gè)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,曲線的普通方程為,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系.
(1)求曲線的極坐標(biāo)方程;
(2)求曲線與焦點(diǎn)的極坐標(biāo),其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左右焦點(diǎn)分別為,點(diǎn)在橢圓上, ,過(guò)點(diǎn)的直線與橢圓分別交于兩點(diǎn).
(1)求橢圓的方程及離心率;
(2)若的面積為為坐標(biāo)原點(diǎn),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某印刷廠為了研究印刷單冊(cè)書籍的成本(單位:元)與印刷冊(cè)數(shù)(單位:千冊(cè))之間的關(guān)系,在印制某種書籍時(shí)進(jìn)行了統(tǒng)計(jì),相關(guān)數(shù)據(jù)見(jiàn)下表:
印刷冊(cè)數(shù)(千冊(cè)) | 2 | 3 | 4 | 5 | 8 |
單冊(cè)成本(元) | 3.2 | 2.4 | 2 | 1.9 | 1.7 |
根據(jù)以上數(shù)據(jù),技術(shù)人員分別借助甲、乙兩種不同的回歸模型,得到兩個(gè)回歸方程,方程甲: ,方程乙: .
(1)為了評(píng)價(jià)兩種模型的擬合效果,完成以下任務(wù).
①完成下表(計(jì)算結(jié)果精確到0.1);
印刷冊(cè)數(shù)(千冊(cè)) | 2 | 3 | 4 | 5 | 8 | |
單冊(cè)成本(元) | 3.2 | 2.4 | 2 | 1.9 | 1.7 | |
模型甲 | 估計(jì)值 | 2.4 | 2.1 | 1.6 | ||
殘差 | 0 | -0.1 | 0.1 | |||
模型乙 | 估計(jì)值 | 2.3 | 2 | 1.9 | ||
殘差 | 0.1 | 0 | 0 |
②分別計(jì)算模型甲與模型乙的殘差平方和及,并通過(guò)比較, 的大小,判斷哪個(gè)模型擬合效果更好.
(2)該書上市之后,受到廣大讀者熱烈歡迎,不久便全部售罄,于是印刷廠決定進(jìn)行二次印刷.根據(jù)市場(chǎng)調(diào)查,新需求量為8千冊(cè)(概率0.8)或10千冊(cè)(概率0.2),若印刷廠以每?jī)?cè)5元的價(jià)格將書籍出售給訂貨商,問(wèn)印刷廠二次印刷8千冊(cè)還是10千冊(cè)能獲得更多利潤(rùn)?(按(1)中擬合效果較好的模型計(jì)算印刷單冊(cè)書的成本)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓 +y2=1的左右焦點(diǎn)分別為F1 , F2 , 直線l過(guò)橢圓的右焦點(diǎn)F2與橢圓交于A,B 兩點(diǎn), (Ⅰ)當(dāng)直線l的斜率為1,點(diǎn)P為橢圓上的動(dòng)點(diǎn),滿足使得△ABP的面積為 的點(diǎn)P有幾個(gè)?并說(shuō)明理由.
(Ⅱ)△ABF1的內(nèi)切圓的面積是否存在最大值?若存在,求出這個(gè)最大值及此時(shí)直線l的方程,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com