給定直線動圓M與定圓外切且與直線相切.
(1)求動圓圓心M的軌跡C的方程;
(2)設(shè)A、B是曲線C上兩動點(異于坐標(biāo)原點O),若求證直線AB過一定點,并求出定點的坐標(biāo).

(1)(2)

解析試題分析:解:(1)由已知可得:定圓的圓心為(-3,0),且M到(-3,0)的距離比它到直線的距離大1,∴M到(-3,0)的距離等于它到直線的距離,
∴動圓圓心M的軌跡為以F(-3,0)為焦點,直線為準(zhǔn)線的拋物線,開口向左,
, ∴動圓圓心M的軌跡C的方程為:
(也可以用直接法:,然后化簡即得:);
(2)方法一:經(jīng)分析:OA,OB的斜率都存在,都不為0,設(shè)OA:,則OB:,
聯(lián)立的方程求得A(,),同理可得B(,),
, 即: ,
,則,∴,∴直線AB與x軸交點為定點,
其坐標(biāo)為。方法二:當(dāng)AB垂直x軸時,設(shè)A,則B,
,∴
此時AB與x軸的交點為;
當(dāng)AB不垂直x軸時,設(shè)AB:,聯(lián)立有:
,∴,
,即:
∴AB:,此時直線AB與x軸交點為定點,其坐標(biāo)為,
綜上:直線AB與x軸交點為定點,其坐標(biāo)為。
考點:拋物線的方程;
點評:對于題目涉及到關(guān)于直線和其他曲線的交點時,一般都可以用到跟與系數(shù)的關(guān)系式:在一元二次方程中,。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知動點到點的距離與到直線的距離之比為定值,記的軌跡為

(1)求的方程,并畫出的簡圖;
(2)點是圓上第一象限內(nèi)的任意一點,過作圓的切線交軌跡兩點.
(i)證明:;
(ii)求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線的焦點為F2,點F1與F2關(guān)于坐標(biāo)原點對稱,直線m垂直于軸(垂足為T),與拋物線交于不同的兩點P、Q,且.
(Ⅰ)求點T的橫坐標(biāo);
(Ⅱ)若橢圓C以F1,F2為焦點,且F1,F2及橢圓短軸的一個端點圍成的三角形面積為1.
① 求橢圓C的標(biāo)準(zhǔn)方程;
② 過點F2作直線l與橢圓C交于A,B兩點,設(shè),若的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的左焦點F為圓的圓心,且橢圓上的點到點F的距離最小值為
(I)求橢圓方程;
(II)已知經(jīng)過點F的動直線與橢圓交于不同的兩點A、B,點M(),證明:為定值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知直線與拋物線相切于點,且與軸交于點,為坐標(biāo)原點,定點的坐標(biāo)為.

(1)若動點滿足,求點的軌跡;
(2)若過點的直線(斜率不等于零)與(1)中的軌跡交于不同的兩點之間),試求△OBE與△OBF面積之比的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓()過點,其左、右焦點分別為,且.
(1)求橢圓的方程;
(2)若是直線上的兩個動點,且,則以為直徑的圓是否過定點?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓具有性質(zhì):若是橢圓為常數(shù)上關(guān)于原點對稱的兩點,點是橢圓上的任意一點,若直線的斜率都存在,并分別記為,,那么之積是與點位置無關(guān)的定值
試對雙曲線為常數(shù)寫出類似的性質(zhì),并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在直角坐標(biāo)平面內(nèi),以坐標(biāo)原點O為極點,x軸的非負半軸為極軸建立極坐標(biāo)系.已知曲線的參數(shù)方程為,曲線的極坐標(biāo)方程為
(Ⅰ)將曲線的參數(shù)方程化為普通方程;
(Ⅱ)判斷曲線與曲線的交點個數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

過點的直線交直線,過點的直線軸于點,,.
(1)求動點的軌跡的方程;
(2)設(shè)直線l與相交于不同的兩點、,已知點的坐標(biāo)為(-2,0),點Q(0,)在線段的垂直平分線上且≤4,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案