設(shè)數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005340714484.png)
的前n項和為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005340729381.png)
,且滿足
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005340745545.png)
,n=1,2,3,…….
(1)求數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005340714484.png)
的通項公式;
(2)若數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005340776491.png)
滿足
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005340776380.png)
,且
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005340792595.png)
,求數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005340776491.png)
的通項公式;
(3)設(shè)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005340823657.png)
,求數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005340839450.png)
的前n項和
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005340854372.png)
.
(1)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005340870611.png)
(2)
試題分析:解:(1)當n=1時,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005340917507.png)
,所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005340932363.png)
當n≥2時,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005340948584.png)
,且
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005340745545.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005340979700.png)
得:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005340995539.png)
則數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005340714484.png)
是以1為首項,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005341026207.png)
為公比的等比數(shù)列,
所以:數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005340714484.png)
的通項公式是
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005340870611.png)
。
(2) 由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005340792595.png)
且
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005340870611.png)
所以:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005341104721.png)
,
則:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005341119660.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005341135648.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005341151674.png)
?? ?
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005341166755.png)
,
以上n-1個等式疊加得:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240053411821183.png)
則:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240053412131502.png)
=2-
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005341229406.png)
,又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005340776380.png)
所以:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005340885612.png)
點評:利用通項公式與前n項和的關(guān)系式來求解得到,屬于基礎(chǔ)題。
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
在數(shù)列{a
n}中,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240121116181230.png)
,試猜想這個數(shù)列的通項公式。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
記直線
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010909649347.png)
:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010909664743.png)
(
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010909664523.png)
)與坐標軸所圍成的直角三角形的面積為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010909680388.png)
,則
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
設(shè)數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010054987415.png)
的前n項和為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010055003345.png)
,點
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010055019919.png)
均在直線
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010055034558.png)
上.
(1)求數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010054987415.png)
的通項公式;(2)設(shè)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010055065528.png)
,試證明數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010055081440.png)
為等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
設(shè)函數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005813137991.png)
,已知數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005813153505.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005813168518.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005813184582.png)
是公差為2的等差數(shù)列,且
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005813200474.png)
.
(Ⅰ)求數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005813215457.png)
的通項公式;
(Ⅱ)當
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005813231434.png)
時,求數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005813246638.png)
的前
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005813262297.png)
項和
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005813262388.png)
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知正項數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005222792480.png)
中,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005222792370.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005222839443.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005222839952.png)
,則
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005222854338.png)
等于
A.16 | B.8 | C.![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005222870378.png) | D.4 |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分14分)
在數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004955668456.png)
中,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004955683388.png)
為其前
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004955715297.png)
項和,滿足
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240049557301160.png)
.
(1)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004955746363.png)
,求數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004955668456.png)
的通項公式;
(2)若數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004955777665.png)
為公比不為1的等比數(shù)列,求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004955683388.png)
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003858267481.png)
的通項公式是
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003858283625.png)
,若前
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003858298297.png)
項和為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003858314298.png)
,則項數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003858298297.png)
為( )
查看答案和解析>>