【題目】已知是無(wú)窮等比數(shù)列,若的每一項(xiàng)都等于它后面所有項(xiàng)的倍,則實(shí)數(shù)的取值范圍是______.
【答案】(﹣∞,﹣2]∪(0,+∞).
【解析】
無(wú)窮等比數(shù)列{an}的各項(xiàng)和為A,前n項(xiàng)和為Sn,公比為q,0<|q|≤1,q≠1.可得A,Sn,由題意可得:an=k(A﹣Sn),代入化為:k,分類討論即可得出.
解:無(wú)窮等比數(shù)列{an}的各項(xiàng)和為A,前n項(xiàng)和為Sn,公比為q,0<|q|≤1,q≠1.
則A,Sn,
由題意可得:an=k(A﹣Sn),
∴a1q=k(),
化為:k,
1>q>0時(shí),k>0,n→+∞時(shí),k→+∞.
﹣1≤q<0時(shí),可得:n為偶數(shù)時(shí),k∈(﹣∞,﹣2];n為奇數(shù)時(shí),k>0.
∴k∈(﹣∞,﹣2]∪(0,+∞).
綜上可得:k∈(﹣∞,﹣2]∪(0,+∞).
故答案為:(﹣∞,﹣2]∪(0,+∞).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,,對(duì)任意,有成立.
(1)求的通項(xiàng)公式;
(2)設(shè),,是數(shù)列的前項(xiàng)和,求正整數(shù),使得對(duì)任意,恒成立;
(3)設(shè),是數(shù)列的前項(xiàng)和,若對(duì)任意均有恒成立,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,某小區(qū)為美化環(huán)境,準(zhǔn)備在小區(qū)內(nèi)的草坪的一側(cè)修建一條直路OC,另一側(cè)修建一條休閑大道.休閑大道的前一段OD是函數(shù)的圖象的一部分,后一段DBC是函數(shù)的圖象,圖象的最高點(diǎn)為,且,垂足為點(diǎn)F.
(1)求函數(shù)的解析式;
(2)若在草坪內(nèi)修建如圖所示的矩形兒童樂園PMFE,點(diǎn)P在曲線OD上,其橫坐標(biāo)為,點(diǎn)E在OC上,求兒童樂園的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如表提供了工廠技術(shù)改造后某種型號(hào)設(shè)備的使用年限和所支出的維修費(fèi)(萬(wàn)元)的幾組對(duì)照數(shù)據(jù):
(年) | 2 | 3 | 4 | 5 | 6 |
(萬(wàn)元) | 1 | 2.5 | 3 | 4 | 4.5 |
參考公式:,.
(1)若知道對(duì)呈線性相關(guān)關(guān)系,請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;
(2)已知該工廠技術(shù)改造前該型號(hào)設(shè)備使用10年的維修費(fèi)用為9萬(wàn)元,試根據(jù)(1)求出的線性回歸方程,預(yù)測(cè)該型號(hào)設(shè)備技術(shù)改造后,使用10年的維修費(fèi)用能否比技術(shù)改造前降低?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】運(yùn)貨卡車以每小時(shí)x千米的速度勻速行駛130千米,按交通法規(guī)限制50≤x≤100(單位:千米/時(shí)).假設(shè)汽油的價(jià)格是每升2元,而汽車每小時(shí)耗油升,司機(jī)的工資是每小時(shí)14元.
(1)求這次行車總費(fèi)用y關(guān)于x的表達(dá)式;
(2)當(dāng)x為何值時(shí),這次行車的總費(fèi)用最低,并求出最低費(fèi)用的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為(t是參數(shù)),在以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為.
(Ⅰ)寫出直線l的普通方程、曲線C的參數(shù)方程;
(Ⅱ)過(guò)曲線C上任意一點(diǎn)A作與直線l的夾角為45°的直線,設(shè)該直線與直線l交于點(diǎn)B,求的最值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分12分)設(shè)函數(shù).
(Ⅰ)討論函數(shù)的單調(diào)性;
(Ⅱ)當(dāng)函數(shù)有最大值且最大值大于時(shí),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】雙曲線的左、右焦點(diǎn)為,,為右支上的動(dòng)點(diǎn)(非頂點(diǎn)),為的內(nèi)心.當(dāng)變化時(shí),的軌跡為( )
A.直線的一部分B.橢圓的一部分
C.雙曲線的一部分D.無(wú)法確定
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)設(shè),若不等式對(duì)于任意的x都成立,求實(shí)數(shù)b的取值范圍;
(2)設(shè),解關(guān)于x的不等式組;
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com