【題目】中,角A,B,C的對邊分別是且滿足
求角B的大;
(2)若的面積為為且,求的值;
【答案】(1). ⑵a+c=.
【解析】
試題分析:(1)又A+B+C=π,即C+B=π-A,
∴sin(C+B)=sin(π-A)=sinA,
將(2a-c)cosB=bcosC,利用正弦定理化簡得:(2sinA-sinC)cosB=sinBcosC,
∴2sinAcosB=sinCcosB+sinBcosC=sin(C+B)=sinA,
在△ABC中,0<A<π,sinA>0,
∴cosB=,又0<B<π,則;
(2)∵△ABC的面積為,sinB=sin=,
∴S=acsinB=ac=,
∴ac=3,又b=,cosB=cos=,
∴由余弦定理b2=a2+c2-2accosB得:a2+c2-ac=(a+c)2-3ac=(a+c)2-9=3,
∴(a+c)2=12,
則a+c=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的右焦點(diǎn)為,且過點(diǎn)
求橢圓的標(biāo)準(zhǔn)方程;
設(shè)直線l:與橢圓在第一象限的交點(diǎn)為M,過點(diǎn)F且斜率為的直線與l交于點(diǎn)N,若與的面積之比為3:為坐標(biāo)原點(diǎn),求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,四邊形是菱形, ,平面平面
在棱上運(yùn)動.
(1)當(dāng)在何處時, 平面;
(2)已知為的中點(diǎn), 與交于點(diǎn),當(dāng)平面時,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)().
(1)求在上的單調(diào)性及極值;
(2)若,對任意的,不等式都在上有解,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)
已知橢圓:的左、右頂點(diǎn)分別為A,B,其離心率,點(diǎn)為橢圓上的一個動點(diǎn),面積的最大值是.
(1)求橢圓的方程;
(2)若過橢圓右頂點(diǎn)的直線與橢圓的另一個交點(diǎn)為,線段的垂直平分線與軸交于點(diǎn),當(dāng)時,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某運(yùn)動制衣品牌為了成衣尺寸更精準(zhǔn),現(xiàn)選擇15名志愿者,對其身高和臂展進(jìn)行測量(單位:厘米),左圖為選取的15名志愿者身高與臂展的折線圖,右圖為身高與臂展所對應(yīng)的散點(diǎn)圖,并求得其回歸方程為,以下結(jié)論中不正確的為
A. 15名志愿者身高的極差小于臂展的極差
B. 15名志愿者身高和臂展成正相關(guān)關(guān)系,
C. 可估計(jì)身高為190厘米的人臂展大約為189.65厘米,
D. 身高相差10厘米的兩人臂展都相差11.6厘米,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,曲線,曲線為參數(shù)), 以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系.
(1)求曲線的極坐標(biāo)方程;
(2)若射線分別交于兩點(diǎn), 求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC的三邊長都是有理數(shù).
(1)求證:cos A是有理數(shù);
(2)求證:對任意正整數(shù)n,cos nA是有理數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)有關(guān)于的一元二次方程.
(Ⅰ)若是從四個數(shù)中任取的一個數(shù),是從三個數(shù)中任取的一個數(shù),求上述方程有實(shí)根的概率.
(Ⅱ)若是從區(qū)間任取的一個數(shù),是從區(qū)間任取的一個數(shù),求上述方程有實(shí)根的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com