(13分)如圖,正方體中.
(Ⅰ)求與所成角的大小;
(Ⅱ)求二面角的正切值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
圖形P-ABCD中,底面ABCD是正方形,PA⊥底面ABCD,PA=AB,Q是PC中點(diǎn).AC,BD交于O點(diǎn).
(1)二面角Q-BD-C的大。
(2求二面角B-QD-C的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)如圖所示,正方形和矩形所在平面相互垂直,是的中點(diǎn).
(1)求證:;
(2)若直線與平面成45o角,求異面直線與所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)已知梯形ABCD中,AD∥BC,∠ABC =∠BAD,AB=BC=2AD=4,E、F分別是AB、CD上的點(diǎn),EF∥BC,AE,G是BC的中點(diǎn).沿EF將梯形ABCD翻折,
使平面AEFD⊥平面EBCF (如圖).
(1)當(dāng)時(shí),求證:BD⊥EG ;
(2)若以F、B、C、D為頂點(diǎn)的三棱錐的體積記為,求的最大值;
(3)當(dāng)取得最大值時(shí),求二面角D-BF-C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如右圖,在四棱錐中,底面為平行四邊形,,,為中點(diǎn),平面, ,為中點(diǎn).
(1)證明://平面;
(2)證明:平面;
(3)求直線與平面所成角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在正方體ABCD-A1B1C1D1中,O為底面ABCD的中心,P是DD1的中點(diǎn),設(shè)Q是CC1上的中點(diǎn),求證:平面D1BQ∥平面PAO.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分10分)
六棱臺(tái)的上、下底面均是正六邊形,邊長(zhǎng)分別是8 cm和18 cm,側(cè)面是全等的等腰梯形,側(cè)棱長(zhǎng)為13 cm,求它的表面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
直四棱柱的底面是菱形,,其側(cè)面展開圖是邊長(zhǎng)為的正方形.、分別是側(cè)棱、上的動(dòng)點(diǎn),.
(Ⅰ)證明:;
(Ⅱ)在棱上,且,若∥平面,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分14分)如圖,在四棱錐E-ABCD中,底面ABCD為正方形, AE⊥平面CDE,已知AE=3,DE=4.
(Ⅰ)若F為DE的中點(diǎn),求證:BE//平面ACF;
(Ⅱ)求直線BE與平面ABCD所成角的正弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com