【題目】給出下列五個命題:
①凈三種個體按的比例分層抽樣調(diào)查,如果抽取的個體為9個,則樣本容易為30;②一組數(shù)據(jù)1、2、3、4、5的平均數(shù)、眾數(shù)、中位數(shù)相同;③甲組數(shù)據(jù)的方差為5,乙組數(shù)據(jù)為5、6、9、10、5,那么這兩組數(shù)據(jù)中較穩(wěn)定的是甲;④已知具有線性相關(guān)關(guān)系的兩個變量滿足的回歸直線方程為.則每增加1個單位,平均減少2個單位;⑤統(tǒng)計的10個樣本數(shù)據(jù)為125,120,122,105,130,114,116,95,120,134,則樣本數(shù)據(jù)落在內(nèi)的頻率為0.4其中真命題為( )
A. ①②④B. ②④⑤C. ②③④D. ③④⑤
【答案】B
【解析】
由題意①中,根據(jù)分層抽樣的方法,即可求解是錯誤的;②中,利用平均數(shù)、眾數(shù)、中位數(shù)的公式求解,即可得到判斷;③中,利用平均數(shù)和方差的公式,即可得到判斷;④中,根據(jù)回歸系數(shù)的含義,即可得到判斷;⑤中,根據(jù)古典概型的概率計算公式,即可求解,作出判斷.
,
①樣本容量為9÷=18,①是假命題;②數(shù)據(jù)1,2,3,3,4,5的平均數(shù)為×(1+2+3+3+4+5)=3,中位數(shù)為3,眾數(shù)為3,都相同,②是真命題;③乙==7,s=×[(5-7)2+(6-7)2+(9-7)2+(10-7)2+(5-7)2]=×(4+1+4+9+4)=4.4,∴s>s,∴乙穩(wěn)定,③是假命題;④是真命題;⑤數(shù)據(jù)落在[114.5,124.5)內(nèi)的有120,122,116,120,共4個,故其頻率為0.4,⑤是真命題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在矩形ABCD中,AB=4,AD=2,E,F(xiàn),O分別為DC,AE,BC的中點.以AE為折痕把△ADE折起,使點D到達點P的位置,且平面PAE⊥平面ABCE(如圖2).
(Ⅰ)求證:BC⊥平面POF;
(Ⅱ)求直線PA與平面PBC所成角的正弦值;
(Ⅲ)在線段PE上是否存在點M,使得AM∥平面PBC?若存在,求的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在學(xué)校組織的英語單詞背誦比賽中,5位評委對甲、乙兩名同學(xué)的評分如莖葉圖所示(分?jǐn)?shù)為整數(shù),且滿分100分),若甲同學(xué)所得評分的中位數(shù)為87,乙同學(xué)所得評分的唯一眾數(shù)為86,則甲同學(xué)所得評分的平均數(shù)不小于乙同學(xué)所得評分的平均數(shù)的概率為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大型工廠有臺大型機器,在個月中,臺機器至多出現(xiàn)次故障,且每臺機器是否出現(xiàn)故障是相互獨立的,出現(xiàn)故障時需名工人進行維修.每臺機器出現(xiàn)故障的概率為.已知名工人每月只有維修臺機器的能力,每臺機器不出現(xiàn)故障或出現(xiàn)故障時有工人維修,就能使該廠獲得萬元的利潤,否則將虧損萬元.該工廠每月需支付給每名維修工人萬元的工資.
(1)若每臺機器在當(dāng)月不出現(xiàn)故障或出現(xiàn)故障時有工人進行維修,則稱工廠能正常運行.若該廠只有名維修工人,求工廠每月能正常運行的概率;
(2)已知該廠現(xiàn)有名維修工人.
(。┯浽搹S每月獲利為萬元,求的分布列與數(shù)學(xué)期望;
(ⅱ)以工廠每月獲利的數(shù)學(xué)期望為決策依據(jù),試問該廠是否應(yīng)再招聘名維修工人?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列有關(guān)命題的說法錯誤的是( )
A.若“p∨q”為假命題,則p,q均為假命題
B.“x=1”是“x≥1”的充分不必要條件
C.“sinx=”的必要不充分條件是“x=”
D.若命題p:x0∈R,x02≥0,則命題¬p:x∈R,x2<0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為菱形,,側(cè)棱底面,,點為的中點,作,交于點.
(1)求證:平面;
(2)求證:;
(3)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的個數(shù)是( )
①一組數(shù)據(jù)的標(biāo)準(zhǔn)差越大,則說明這組數(shù)據(jù)越集中;
②曲線與曲線的焦距相等;
③在頻率分布直方圖中,估計的中位數(shù)左邊和右邊的直方圖的面積相等;
④已知橢圓,過點作直線,當(dāng)直線斜率為時,M剛好是直線被橢圓截得的弦AB的中點.
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了研究高中學(xué)生對鄉(xiāng)村音樂的態(tài)度(喜歡和不喜歡兩種態(tài)度)與性別的關(guān)系,運用2×2列聯(lián)表進行獨立性檢驗,經(jīng)計算K2=8.01,附表如下:
P(K2≥k0) | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
參照附表,得到的正確的結(jié)論是( 。
A. 有99%以上的把握認(rèn)為“喜歡鄉(xiāng)村音樂與性別有關(guān)”
B. 有99%以上的把握認(rèn)為“喜歡鄉(xiāng)村音樂與性別無關(guān)”
C. 在犯錯誤的概率不超過0.1%的前提下,認(rèn)為“喜歡鄉(xiāng)村音樂與性別有關(guān)”
D. 在犯錯誤的概率不超過0.1%的前提下,認(rèn)為“喜歡鄉(xiāng)村音樂與性別無關(guān)”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線的參數(shù)方程為(為參數(shù)),,為曲線上的一動點.
(I)求動點對應(yīng)的參數(shù)從變動到時,線段所掃過的圖形面積;
(Ⅱ)若直線與曲線的另一個交點為,是否存在點,使得為線段的中點?若存在,求出點坐標(biāo);若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com