【題目】如圖,在四棱柱ABCD﹣A1B1C1D1中,D1D⊥底面ABCD,底面ABCD是正方形,
(1)若E為DD1的中點,證明:BD1∥面EAC
(2)求證:AC⊥平面BB1D1D.
【答案】
(1)證明:設AC∩BD=O,則O是BD的中點,
∵E為DD1的中點,
∴OE∥BD1,
∵BD1面EAC,OE面EAC,
∴BD1∥面EAC
(2)證明:∵ABCD為正方形,∴AC⊥BD,
∵D1D⊥平面ABCD,∴D1D⊥AC,
又BD∩D1D=D,
∴AC⊥平面BB1D1D.
【解析】(1)設AC∩BD=O,則O是BD的中點,要證明BD1∥面EAC,證明OE∥BD1即可;(2)要證AC⊥平面BB1D1D,只需證得AC⊥BD,AC⊥D1D,由正方形的對角線的性質和D1D⊥底面ABCD,即可得證.
【考點精析】認真審題,首先需要了解直線與平面平行的判定(平面外一條直線與此平面內的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行),還要掌握直線與平面垂直的判定(一條直線與一個平面內的兩條相交直線都垂直,則該直線與此平面垂直;注意點:a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉化的數(shù)學思想)的相關知識才是答題的關鍵.
科目:高中數(shù)學 來源: 題型:
【題目】已知直線l1的方程為3x+4y﹣12=0,
(1)求l2的方程,使得:①l2與l1平行,且過點(﹣1,3); ②l2與l1垂直,且l2與兩坐標軸圍成的三角形面積為4;
(2)直線l1與兩坐標軸分別交于A、B 兩點,求三角形OAB(O為坐標原點)內切圓及外接圓的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱柱ABC﹣A1B1C1中,側棱AA1⊥底面ABC,底面ABC等邊三角形,E,F(xiàn)分別是BC,CC1的中點.求證: (Ⅰ) EF∥平面A1BC1;
(Ⅱ) 平面AEF⊥平面BCC1B1 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=loga (0<a<1)為奇函數(shù),當x∈(﹣2,2a)時,函數(shù)f(x)的值域是(﹣∞,1),則實數(shù)a+b= .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓C:x2+y2+2x﹣3=0.
(1)求圓的圓心C的坐標和半徑長;
(2)直線l經(jīng)過坐標原點且不與y軸重合,l與圓C相交于A(x1 , y1)、B(x2 , y2)兩點,求證: 為定值;
(3)斜率為1的直線m與圓C相交于D、E兩點,求直線m的方程,使△CDE的面積最大.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ax2+2ax+4(0<a<3),若x1<x2 , x1+x2=1﹣a,則( )
A.f(x1)<f(x2)
B.f(x1)>f(x2)
C.f(x1)=f(x2)
D.f(x1)<f(x2)和f(x1)=f(x2)都有可能
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】要得到函數(shù)y=cos(2x﹣ )的圖象,只需將函數(shù)y=sin2x的圖象( )
A.向左平移 個單位
B.向左平移 個單位
C.向右平移 個單位
D.向右平移 個單位
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)y=f(x)是R上的奇函數(shù),且在區(qū)間(0,+∞)單調遞增,若f(﹣2)=0,則不等式xf(x)<0的解集是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com