【題目】已知矩形ADEF和菱形ABCD所在平面互相垂直,如圖,其中AF=1,AD=2,∠ADC= ,點(diǎn)N時(shí)線段AD的中點(diǎn).
(Ⅰ)試問在線段BE上是否存在點(diǎn)M,使得直線AF∥平面MNC?若存在,請(qǐng)證明AF∥平面MNC,并求出 的值,若不存在,請(qǐng)說明理由;
(Ⅱ)求二面角N﹣CE﹣D的正弦值.

【答案】解:(Ⅰ) 作FE的中點(diǎn)P,連接CP交BE于點(diǎn)M,M點(diǎn)即為所求的點(diǎn)

證明:連接PN,∵N是AD的中點(diǎn),P是FE的中點(diǎn),∴PN∥AF,

又PN平面MNC,AF平面MNC,

∴直線AF∥平面MNC.

∵PE∥AD,AD∥BC,∴PE∥BC,

(Ⅱ)由(Ⅰ)知PN⊥AD,又面ADEF⊥面ABCD,面ADEF∩面ABCD=AD,PN面ADEF,

所以PN⊥面ABCD.

故PN⊥ND,PN⊥NC.

以N為空間坐標(biāo)原點(diǎn),NC,ND,NP分別為x,y,z軸建立空間直角坐標(biāo)系N﹣xyz,

∵∠ADC= ,AD=DC=2,∴△ADC為正三角形,NC= ,

∴N(0,0,0),C( ,0,0),D(0,1,0),E(0,1,1),

=(0,1,1), =( ,0,0), =(0,0,1), =( ,﹣1,0),

設(shè)平面NEC的一個(gè)法向量n1=(x,y,z),則由n1 =0,n1 =0可得

令y=1,則n1=(0,1,﹣1).

設(shè)平面CDE的一個(gè)法向量n2=(x1,y1,z1),則由n2 =0,n2 =0可得

令x1=1,則n2=(1, ,0).

則cos<n1,n2>= ,

設(shè)二面角N﹣CE﹣D的平面角為θ,則sinθ= ,

∴二面角N﹣CE﹣D的正弦值為


【解析】(Ⅰ) 作FE的中點(diǎn)P,連接CP交BE于點(diǎn)M,M點(diǎn)即為所求的點(diǎn),由PE∥AD,AD∥BC,得PE∥BC, ,(Ⅱ)由(Ⅰ)得PN⊥ND,PN⊥NC,以N為空間坐標(biāo)原點(diǎn),NC,ND,NP分別為x,y,z軸建立空間直角坐標(biāo)系N﹣xyz,N(0,0,0),C( ,0,0),D(0,1,0),E(0,1,1),利用向量法求解.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解直線與平面平行的判定的相關(guān)知識(shí),掌握平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為 (θ為參數(shù)),在以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸,且與直角坐標(biāo)系有相同的長度單位的極坐標(biāo)系中,直線l的方程為ρsin(θ+ )=2
(1)求曲線C的普通方程和直線l的直角坐標(biāo)方程;
(2)求直線l被曲線C截得的弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)與g(x)分別是定義在R上的偶函數(shù)和奇函數(shù),且f(x)﹣g(x)=x3﹣2x , 則f(2)+g(2)=(
A.4
B.﹣4
C.2
D.﹣2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形ABCD是正方形,EA⊥平面ABCD,PD∥EA,AD=PD=2EA=2,F(xiàn),G,H分別為BP,BE,PC的中點(diǎn).
(1)求證:GH∥平面ADPE;
(2)M是線段PC上一點(diǎn),且PM= ,求二面角C﹣EF﹣M的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】三棱錐P﹣ABC中,PA、PB、PC互相垂直,PA=PB=1,M是線段BC上一動(dòng)點(diǎn),若直線AM與平面PBC所成角的正切的最大值是 ,則三棱錐P﹣ABC的外接球的表面積是(
A.2π
B.4π
C.8π
D.16π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知兩條直線m,n和兩個(gè)不同平面α,β,滿足α⊥β,α∩β=l,m∥α,n⊥β,則(
A.m∥n
B.m⊥n
C.m∥l
D.n⊥l

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】由于當(dāng)前學(xué)生課業(yè)負(fù)擔(dān)較重,造成青少年視力普遍下降,現(xiàn)從某高中隨機(jī)抽取16名學(xué)生,經(jīng)校醫(yī)用對(duì)數(shù)視力表檢查得到每個(gè)學(xué)生的視力狀況的莖葉圖(以小數(shù)點(diǎn)前的一位數(shù)字為莖,小數(shù)點(diǎn)后的一位數(shù)字為葉)如圖:
(Ⅰ)指出這組數(shù)據(jù)的眾數(shù)和中位數(shù);
(Ⅱ)若視力測(cè)試結(jié)果不低丁5.0,則稱為“好視力”,求校醫(yī)從這16人中隨機(jī)選取3人,至多有1人是“好視力”的概率;
(Ⅲ)以這16人的樣本數(shù)據(jù)來估計(jì)整個(gè)學(xué)校的總體數(shù)據(jù),若從該校(人數(shù)很多)任選3人,記ξ表示抽到“好視力”學(xué)生的人數(shù),求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=alnx+b(a,b∈R),曲線f(x)在x=1處的切線方程為x﹣y﹣1=0.
(Ⅰ)求a,b的值;
(Ⅱ)證明: ;
(Ⅲ)已知滿足xlnx=1的常數(shù)為k.令函數(shù)g(x)=mex+f(x)(其中e是自然對(duì)數(shù)的底數(shù),e=2.71828…),若x=x0是g(x)的極值點(diǎn),且g(x)≤0恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ex﹣x2+2a+b(x∈R)的圖象在x=0處的切線為y=bx.(e為自然對(duì)數(shù)的底數(shù)).
(Ⅰ)求a,b的值;
(Ⅱ)若k∈Z,且f(x)+ (3x2﹣5x﹣2k)≥0對(duì)任意x∈R恒成立,求k的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案