【題目】有甲、乙兩個班級進行數學考試,按照大于等于85分為優(yōu)秀,85分以下為非優(yōu)秀統(tǒng)計成績后,得到如下的列聯表.
已知從全部105人中隨機抽取1人為優(yōu)秀的概率為.
(1)請完成上面的列聯表:若按的可靠性要求,根據列聯表的數據,能否認為“成績與班級有關系”;
(2)若按下面的方法從甲班優(yōu)秀的學生中抽取一人:把甲班優(yōu)秀的10名學生從2到11進行編號,先后兩次拋擲一枚均勻的骰子,出現的點數之和為被抽取人的序號.試求抽到10號的概率.
附:
科目:高中數學 來源: 題型:
【題目】如圖, 、分別為直角三角形的直角邊和斜邊的中點,沿將折起到的位置,連結、, 為的中點.
(1)求證: 平面;(2)求證:平面平面;
(3)求證: 平面.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,四邊形中, , , ,將沿折起,使平面平面,構成四面體,則在四面體中,下列說法不正確的是( ).
A. 直線直線 B. 直線直線
C. 直線平面 D. 平面平面
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知: 、 、 是同一平面內的三個向量,其中 =(1,2)
(1)若| |=2 ,且 ∥ ,求 的坐標;
(2)若| |= ,且 +2 與2 ﹣ 垂直,求v與 的夾角θ.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在四棱柱中,底面,底面為菱形,為與交點,已知,.
(I)求證:平面.
(II)在線段上是否存在一點,使得平面,如果存在,求的值,如果不存在,請說明理由.
(III)設點在內(含邊界),且,求所有滿足條件的點構成的圖形,并求的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數.
(Ⅰ)的最小正周期和單調遞增區(qū)間;
(Ⅱ)已知a,b,c是△ABC三邊長,且f(C)=2,△ABC的面積S=,c=7.求角C及a,b的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com