【題目】已知動圓恒過點,且與直線: 相切.
(1)求動圓圓心的軌跡的方程;
(2)探究在曲線上,是否存在異于原點的兩點, ,當時,直線恒過定點?若存在,求出該定點坐標;若不存在,請說明理由.
【答案】(1)軌跡方程為;(2)直線過定點.
【解析】(1)因為動圓M,過點F且與直線相切, 所以圓心M到F的距離等于到直線的距離.根據(jù)拋物線的定義可以確定點M的軌跡是拋物線,易求其方程.
(II)本小題屬于存在性命題,先假設存在A,B在上, 直線AB的方程: ,即AB的方程為,然后根據(jù),∴AB的方程為,從而可確定其所過定點.
解:(1) 因為動圓M,過點F且與直線相切,
所以圓心M到F的距離等于到直線的距離. …………2分
所以,點M的軌跡是以F為焦點, 為準線的拋物線,且, , ……4分
所以所求的軌跡方程為……………6分
(2) 假設存在A,B在上, …………7分
∴直線AB的方程: , …………9分
即AB的方程為: , …………10分
即…………11分
又∵∴AB的方程為,…………12分
令,得,所以,無論為何值,直線AB過定點(4,0) …………14分
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在海岸處發(fā)現(xiàn)北偏東方向,距處海里的處有一艘走私船,在處北偏西方向,距處海里的處的我方輯私船奉命以海里/小時的速度追截走私船,此時走私船正以海里/小時的速度,以處向北偏東方向逃竄.問:輯私船沿什么方向行駛才能最快截獲走私船?并求出所需時間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x﹣ ,g(x)=x2﹣2ax+4,若任意x1∈[0,1],存在x2∈[1,2],使f(x1)≥g(x2),求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,△內(nèi)接于圓,是圓的直徑,四邊形為平行四邊形,平面,.
(1)求證:⊥平面;
(2)設,表示三棱錐的體積,求函數(shù)的解析式及最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設命題: ,函數(shù)有意義;命題: ,不等式恒成立,如果命題“或”為真命題,命題“且”為假命題,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義在R上的函數(shù)f(x)滿足f(x)+f(x+5)=16,當x∈(﹣1,9)時,f(x)=x2﹣2x , 則函數(shù)f(x)在[0,2016]上的零點個數(shù)是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,角A,B,C的對邊分別為a,b,c.設向量 =(a,c), =(cosC,cosA).
(1)若 ,c= a,求角A;
(2)若 =3bsinB,cosA= ,求cosC的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一個正方體的平面展開圖及該正方體的直觀圖的示意圖如圖所示.
(1)請按字母F、G、H標記在正方體相應地頂點處(不需要說明理由);
(2)判斷平面BEG與平面ACH的位置關系.并說明你的結論;
(3)證明:直線DF⊥平面BEG.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為Sn , 且Sn+an=4,n∈N*
(1)求數(shù)列{an}的通項公式;
(2)已知cn=2n+3(n∈N*),記dn=cn+logCan(C>0,C≠1),是否存在這樣的常數(shù)C,使得數(shù)列{dn}是常數(shù)列,若存在,求出C的值;若不存在,請說明理由.
(3)若數(shù)列{bn},對于任意的正整數(shù)n,均有 成立,求證:數(shù)列{bn}是等差數(shù)列.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com