【題目】已知數(shù)列滿(mǎn)足,對(duì)每個(gè)正整數(shù),有或.如這個(gè)數(shù)列可以為1,2,4,6,10….
(1)若某一項(xiàng)為奇數(shù),且不為3的倍數(shù),證明:;
(2)證明:;
(3)若在的前2015項(xiàng)中,恰有t個(gè)項(xiàng)為奇數(shù),求t的最大值.
【答案】(1)見(jiàn)解析;(2)見(jiàn)解析;(3)1343
【解析】
(1)由am不為偶數(shù),知.
于是,.
假如,則為3的倍數(shù),與已知條件矛盾.
從而,只能是.
故.
(2)由遞推關(guān)系,易知數(shù)列是單調(diào)遞增的.
因此,當(dāng)時(shí),.
從而,,即.
由此,.
故
(3)一方面,數(shù)列的任意相鄰三項(xiàng)至多有兩個(gè)奇數(shù).
事實(shí)上,假如均為奇數(shù),由均為偶數(shù),故根據(jù)遞推關(guān)系知為偶數(shù),矛盾.
因此,在這671組數(shù)中,每組至多含兩個(gè)奇數(shù).
再考慮到為奇數(shù),為偶數(shù),故至多有個(gè)奇數(shù),即.
另一方面 ,當(dāng)數(shù)列總滿(mǎn)足時(shí),注意到,為奇數(shù),為偶數(shù),故對(duì)每個(gè)正整數(shù)k,由遞推關(guān)系得為奇數(shù),為奇數(shù),為偶數(shù),此時(shí),數(shù)列的前2015項(xiàng)含有1343個(gè)奇數(shù).
綜上,t的最大值1343.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) (a>0),且f(1)=2;
(1)求a和f(x)的單調(diào)區(qū)間;
(2)f(x+1)﹣f(x)>2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C; =1(a>b>c)的左、右焦點(diǎn)分別為F1(﹣c,0)、F2(c,0),過(guò)原點(diǎn)O的直線(與x軸不重合)與橢圓C相交于D、Q兩點(diǎn),且|DF1|+|QF1|=4,P為橢圓C上的動(dòng)點(diǎn),△PF1F2的面積的最大值為 .
(1)求橢圓C的離心率;
(2)若A、B是橢圓C上關(guān)于x軸對(duì)稱(chēng)的任意兩點(diǎn),設(shè)點(diǎn)N(﹣4,0),連接NA與橢圓C相交于點(diǎn)E,直線BE與x軸相交于點(diǎn)M,試求 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知銳角三角形ABC中,角A,B,C所對(duì)的邊分別為a,b,c若c﹣a=2acosB,則 的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,設(shè)橢圓 =1(a>b>0)的左、右焦點(diǎn)分別為F1 , F2 , 右頂點(diǎn)為A,上頂點(diǎn)為B,離心率為e.橢圓上一點(diǎn)C滿(mǎn)足:C在x軸上方,且CF1⊥x軸.
(1)若OC∥AB,求e的值;
(2)連結(jié)CF2并延長(zhǎng)交橢圓于另一點(diǎn)D若 ≤e≤ ,求 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖四邊形ABCD為菱形,G為AC與BD交點(diǎn),,
(I)證明:平面平面;
(II)若, 三棱錐的體積為,求該三棱錐的側(cè)面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等比數(shù)列滿(mǎn)足,,.
求數(shù)列的通項(xiàng)公式;
設(shè),求的前n項(xiàng)和為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=log2(|x+1|+|x﹣1|﹣a)
(1)當(dāng)a=3時(shí),求函數(shù)f(x)的定義域;
(2)若不等式f(x)≥2的解集為R,求實(shí)數(shù)a的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,離心率為,且過(guò)點(diǎn)P。
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知斜率為1的直線l過(guò)橢圓的右焦點(diǎn)F交橢圓于A.B兩點(diǎn),求弦AB的長(zhǎng)。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com