(本題18分,第(1)小題4分;第(2)小題6分;第(3)小題8分)

如圖,已知橢圓E,焦點為、,雙曲線G的頂點是該橢圓的焦點,設是雙曲線G上異于頂點的任一點,直線、與橢圓的交點分別為ABC、D,已知三角形的周長等于,橢圓四個頂點組成的菱形的面積為.

(1)求橢圓E與雙曲線G的方程;

(2)設直線、的斜率分別為,探求的關系;

(3)是否存在常數(shù),使得恒成立?若存在,試求出的值;若不存在,

請說明理由.

 (1)由題意知,橢圓中 

所以橢圓的標準方程為            

又頂點與焦點重合,所以;   

所以該雙曲線的標準方程為。     

(2)設點       

     

在雙曲線上,所以

        所以    

(3)設直線AB:    

由方程組  

所以         

由弦長公式   

同理      

代入得      

    

所以存在使得成立

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(本題滿分18分,第(1)小題4分,第(2)小題7分,第(3)小題7分)

對于兩個定義域相同的函數(shù),如果存在實數(shù)使得,則稱函數(shù)是由“基函數(shù)、”生成的.

(1)若+2生成一個偶函數(shù),求的值;

(2)若=2+3-1由函數(shù),,∈R且≠0生成,求+2的取值范圍;

(3)如果給定實系數(shù)基函數(shù),≠0,問:任意一個一次函數(shù)是否都可以由它們生成?請給出你的結論并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本題滿分18分,第(1)小題4分,第(2)小題6分,第(3)小題8分)已知直線>0交拋物線C:=2>0于A、B兩點,M是線段AB的中點,過M作軸的垂線交C于點N.

(1)若直線過拋物線C的焦點,且垂直于拋物線C的對稱軸,試用表示|AB|;

(2)證明:過點N且與AB平行的直線和拋物線C有且僅有一個公共點;

(3)是否存在實數(shù),使=0.若存在,求出的所有值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年上海市崇明縣高三第一學期期末考試數(shù)學 題型:解答題

(本題18分,第(1)小題4分;第(2)小題6分;第(3)小題8分)

如圖,已知橢圓過點,上、下焦點分別為,

向量.直線與橢圓交于兩點,線段中點為

(1)求橢圓的方程;

(2)求直線的方程;

(3)記橢圓在直線下方的部分與線段所圍成的平面區(qū)域(含邊界)為,若曲線

與區(qū)域有公共點,試求的最小值.

 

查看答案和解析>>

科目:高中數(shù)學 來源:上海市長寧區(qū)2010屆高三第二次模擬考試數(shù)學理 題型:解答題

(本題滿分18分,第(1)小題4分,第(2)小題6分,第(3)小題8分)

在平行四邊形中,已知過點的直線與線段分別相交于點。若。

(1)求證:的關系為;

(2)設,定義函數(shù),點列在函數(shù)的圖像上,且數(shù)列是以首項為1,公比為的等比數(shù)列,為原點,令,是否存在點,使得?若存在,請求出點坐標;若不存在,請說明理由。

(3)設函數(shù)上偶函數(shù),當,又函數(shù)圖象關于直線對稱, 當方程上有兩個不同的實數(shù)解時,求實數(shù)的取值范圍。

 

查看答案和解析>>

同步練習冊答案