【題目】為了調(diào)查甲、乙兩個(gè)網(wǎng)站受歡迎的程度隨機(jī)選取了14,統(tǒng)計(jì)上午8:00~10:00各自的點(diǎn)擊量,得到如圖所示的莖葉圖,根據(jù)莖葉圖回答下列問題.

(1)甲、乙兩個(gè)網(wǎng)站點(diǎn)擊量的極差分別是多少?

(2)甲網(wǎng)站點(diǎn)擊量在[10,40]間的頻率是多少?

(3)甲、乙兩網(wǎng)站哪個(gè)更受歡迎?并說明理由.

【答案】(1)65,66; (2)0.286; (3) 甲網(wǎng)站更受歡迎

【解析】

1)根據(jù)莖葉圖,得到甲乙兩網(wǎng)站的最大點(diǎn)擊量和最小點(diǎn)擊量,即可求解極差;

2)由莖葉圖可知,在中,有,共4個(gè)數(shù)據(jù),即可求解相應(yīng)的概率;

3)由莖葉圖,可知甲網(wǎng)站的點(diǎn)擊量集中在莖葉圖的下方,而乙網(wǎng)站的點(diǎn)擊量集中在莖葉圖的上方,即可作出判定.

1)由莖葉圖可知,

甲網(wǎng)站最大點(diǎn)擊量為73,最小的點(diǎn)擊量為8,所以甲網(wǎng)站的點(diǎn)擊量的極差為73–8=65

乙網(wǎng)站最大點(diǎn)擊量為71,最小的點(diǎn)擊量為5,所以乙網(wǎng)站的點(diǎn)擊量的極差為71–5=66

2)由莖葉圖可知,在中,有,共4個(gè)數(shù)據(jù),

所以甲網(wǎng)站在內(nèi)的概率為

3)由莖葉圖,可知甲網(wǎng)站的點(diǎn)擊量集中在莖葉圖的下方,而乙網(wǎng)站的點(diǎn)擊量集中在莖葉圖的上方,從數(shù)據(jù)的分布情況來看,可判定甲網(wǎng)站更受歡迎.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

(1)當(dāng)時(shí),求函數(shù)的極小值;

(2)若函數(shù)個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍;

(3)在(2)的條件下,若函數(shù)的三個(gè)零點(diǎn)分別為,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O是△ABC的外接圓,D是 的中點(diǎn),BD交AC于E. (Ⅰ)求證:DC2=DEDB;
(Ⅱ)若CD=2 ,O到AC的距離為1,求⊙O的半徑r.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={x||x﹣1|≤2,x∈Z},B={x|y=log2(x+1),x∈R},則A∩B=(
A.{﹣1,0,1,2,3}
B.{0,1,2,3}
C.{1,2,3}
D.{﹣1,1,2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中,底面ABCD是矩形,平面ABCD,,E,F(xiàn)是線段BC,AB的中點(diǎn).

證明:

在線段PA上確定點(diǎn)G,使得平面PED,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某算法的程序框圖如圖所示,若將輸出的(x,y)值依次記為(x1,y1),(x2,y2),…,(xn,yn),….

(1)若程序運(yùn)行中輸出的一個(gè)數(shù)組是(9,t),求t的值;

(2)程序結(jié)束時(shí),共輸出(x,y)的組數(shù)為多少;

(3)寫出程序框圖的程序語句.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】A、B、C三位老師分別教數(shù)學(xué)、英語、體育、勞技、語文、閱讀六門課,每位教兩門.已知:

(1)體育老師和數(shù)學(xué)老師住在一起,

(2)A老師是三位老師中最年輕的,

(3)數(shù)學(xué)老師經(jīng)常與C老師下象棋,

(4)英語老師比勞技老師年長(zhǎng),比B老師年輕,

(5)三位老師中最年長(zhǎng)的老師比其他兩位老師家離學(xué)校遠(yuǎn).

問:A、B、C三位老師每人各教哪幾門課?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四面體中, 在平面的射影為棱的中點(diǎn), 為棱的中點(diǎn),過直線作一個(gè)平面與平面平行,且與交于點(diǎn),已知, .

(1)證明: 為線段的中點(diǎn)

(2)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知各項(xiàng)均不相等的等差數(shù)列{an}的前四項(xiàng)和S4=14,且a1 , a3 , a7成等比數(shù)列. (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)Tn為數(shù)列{ }的前n項(xiàng)和,若Tn≤λan+1對(duì)n∈N*恒成立,求實(shí)數(shù)λ的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案