如圖,某小區(qū)有一邊長為2(單位:百米)的正方形地塊OABC,其中OAE是一個游泳池,計劃在地塊OABC內(nèi)修一條與池邊AE相切的直路(寬度不計),切點為M,并把該地塊分為兩部分.現(xiàn)以點O為坐標(biāo)原點,以線段OC所在直線為x軸,建立平面直角坐標(biāo)系,若池邊AE滿足函數(shù))的圖象,且點M到邊OA距離為
(1)當(dāng)時,求直路所在的直線方程;
(2)當(dāng)t為何值時,地塊OABC在直路不含泳池那側(cè)的面積取到最大,最大值是多少?

(1)(2)

解析試題分析:(1)直路與池邊AE相切,切點為M,點M到邊OA距離為,因此又切線斜率為故切線方程為,(2)用t表示出地塊OABC在直路不含泳池那側(cè)的面積. ,過切點M的切線,令,故切線與AB交于點,得,又遞減,所以,故切線與OC交于點,地塊OABC在切線右上部分區(qū)域為直角梯形,面積,等號,.
(1)         6分
(2),過切點M的切線
,令,故切線與AB交于點;
,得,又遞減,所以
故切線與OC交于點。地塊OABC在切線右上部分區(qū)域為直角梯形,      12分
面積,等號,。     16分
考點:函數(shù)實際問題

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

噪聲污染已經(jīng)成為影響人們身體健康和生活質(zhì)量的嚴(yán)重問題.實踐證明, 聲音強(qiáng)度(分貝)由公式(為非零常數(shù))給出,其中為聲音能量.
(1)當(dāng)聲音強(qiáng)度滿足時,求對應(yīng)的聲音能量滿足的等量關(guān)系式;
(2)當(dāng)人們低聲說話,聲音能量為時,聲音強(qiáng)度為30分貝;當(dāng)人們正常說話,聲音能量為時,聲音強(qiáng)度為40分貝.當(dāng)聲音能量大于60分貝時屬于噪音,一般人在100分貝~120分貝的空間內(nèi),一分鐘就會暫時性失聰.問聲音能量在什么范圍時,人會暫時性失聰.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分14分)本題共有2個小題,第1小題滿分6分,第2個小題滿分8分。
已知.
(1)當(dāng),時,若不等式恒成立,求的范圍;
(2)試證函數(shù)內(nèi)存在零點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)f(x)=ax2+(b-2)x+3(a≠0),若不等式f(x)>0的解集為(-1,3).
(1)求a,b的值;
(2)若函數(shù)f(x)在x∈[m,1]上的最小值為1,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

為了尋找馬航殘骸,我國“雪龍?zhí)枴笨瓶即?014年3月26日從港口出發(fā),沿北偏東角的射線方向航行,而在港口北偏東角的方向上有一個給科考船補(bǔ)給物資的小島,海里,且.現(xiàn)指揮部需要緊急征調(diào)位于港口正東海里的處的補(bǔ)給船,速往小島裝上補(bǔ)給物資供給科考船.該船沿方向全速追趕科考船,并在處相遇.經(jīng)測算當(dāng)兩船運行的航線與海岸線圍成的三角形的面積最小時,這種補(bǔ)給方案最優(yōu).

(1)求關(guān)于的函數(shù)關(guān)系式;
(2)應(yīng)征調(diào)位于港口正東多少海里處的補(bǔ)給船只,補(bǔ)給方案最優(yōu)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)二次函數(shù)滿足條件:①;②函數(shù)的圖像與直線相切.
(1)求函數(shù)的解析式;
(2)若不等式時恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

計算:
 ;       ②.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某商品每件成本9元,售價為30元,每星期賣出144件. 如果降低價格,銷售量可以增加,且每星期多賣出的商品件數(shù)與商品單價的降低值(單位:元,)的平方成正比.
已知商品單價降低2元時,一星期多賣出8件.
(1)將一個星期的商品銷售利潤表示成的函數(shù);
(2)如何定價才能使一個星期的商品銷售利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

對于函數(shù)f(x),若存在x0∈R,使f(x0)=x0成立,則稱x0為f(x)的不動點,已知函數(shù)f(x)=ax2+(b+1)x+b-1(a≠0).
(1)當(dāng)a=1,b=-2時,求f(x)的不動點;
(2)若對任意實數(shù)b,函數(shù)f(x)恒有兩個相異的不動點,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案