過(guò)點(diǎn)(0,-
1
2
)
的直線l與拋物線y=-x2交于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn),則
OA
OB
的值為(  )
分析:法一:根據(jù)拋物線的標(biāo)準(zhǔn)方程,當(dāng)AB的斜率為0時(shí),可得A,B,求得
OA
OB
的值,結(jié)合選擇題的特點(diǎn),得出結(jié)論.
法二:由拋物線y=-x2與過(guò)其焦點(diǎn)(0,-
1
2
)的直線方程聯(lián)立,消去y整理成關(guān)于x的一元二次方程,設(shè)出A(x1,y1)、B(x2,y2)兩點(diǎn)坐標(biāo),
OA
• 
OB
=x1•x2+y1•y2,由韋達(dá)定理可以求得答案.
解答:解:法一:當(dāng)AB的斜率K=0時(shí),可得A(-
2
2
,-
1
2
),B(
2
2
,-
1
2

OA
OB
=( -
2
2
,-
1
2
)•(
2
2
,-
1
2
)=-
1
2
+
1
4
=-
1
4

故選B
法二:,由題意可得直線AB的斜率存在
∴直線AB的方程為y=kx-
1
2

y=kx-
1
2
y=-x2
x2+kx-
1
2
=0
,設(shè)A(x1,y1),B(x2,y2),
則 x1+x2=-k,x1x2=-
1
2

∴y1•y2=(kx1-
1
2
)•(kx2-
1
2
)=k2x1•x2-
1
2
k(x1+x2+
1
4
=
1
4

OA
OB
=x1•x2+y1•y2=-
1
2
+
1
4
=-
1
4

故選B
點(diǎn)評(píng):本題考查拋物線的標(biāo)準(zhǔn)方程,以及簡(jiǎn)單性質(zhì)的應(yīng)用,兩個(gè)向量的數(shù)量積公式,其中法一中,通過(guò)給變量取特殊值,檢驗(yàn)所給的選項(xiàng),是一種簡(jiǎn)單有效的方法,在此類對(duì)于參數(shù)K取任意值時(shí)所研究的對(duì)象取值不變的前提下,應(yīng)用特殊值法解決此類問(wèn)題最有效,最直接,注意此方法的應(yīng)用的原理.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,在△ABC中,
CA
CB
,
OA
=(0,-2)
,M在y軸上,且
AM
=
1
2
(
AB
+
AC
)
,C在x軸上移動(dòng).
(Ⅰ)求點(diǎn)B的軌跡E的方程;
(Ⅱ)過(guò)點(diǎn)F(0,-
1
4
)
的直線l交軌跡E于H,G兩點(diǎn)(H在F,G之間),若
FH
=
1
2
HG
,求直線l的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•廣東模擬)設(shè)函數(shù)f(x)=3sin(ωx+φ)(ω>0,-
π
2
<φ<
π
2
)
的圖象關(guān)于直線x=
2
3
π
對(duì)稱,它的周期是π,則(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•唐山二模)已知?jiǎng)訄AC經(jīng)過(guò)點(diǎn)(0,1),且在x軸上截得弦長(zhǎng)為2,記該圓圓心的軌跡為E.
(Ⅰ)求曲線E的方程;
(Ⅱ)過(guò)點(diǎn)M(0,
1
2
)
的直線m交曲線E于A,B兩點(diǎn),過(guò)A,B兩點(diǎn)分別作曲線E的切線,兩切線交于點(diǎn)C,當(dāng)△ABC的面積為2
2
時(shí),求直線m的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

過(guò)點(diǎn)(0,-
1
2
)
的直線l與拋物線y=-x2交于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn),則
OA
OB
的值為(  )
A.-
1
2
B.-
1
4
C.-4D.無(wú)法確定

查看答案和解析>>

同步練習(xí)冊(cè)答案