【題目】已知中,角、所對的邊分別是、、,,有以下四個命題:滿足條件的不可能是直角三角形;時,的周長為15;③

時,若的內心,則的面積為;④ 的面積的最大值為40.其中正確命題有__________(填寫出所有正確命題的序號).

【答案】③④

【解析】

①,考慮勾股定理的逆定理,即可判斷;
②,運用正弦定理可得,運用三角函數(shù)的恒等變換,即可得到所求周長;
③,運用正弦定理和三角函數(shù)的恒等變換、三角形的面積公式和等積法,即可得到所求面積.
④,運用圓的方程和三角形的面積公式,即可得到所求最大值;

對于①,,,設,由 ,可得 ,滿足條件的可能是直角三角形,故①錯誤;
對于②,,,,可得,由正弦定理可得,可得,由

可得:,解得

可得,可得:,則,故②正確;
對于③,由②得
的內切圓半徑為,則.故③正確.
對于④,對于①,以的中點為坐標原點,所在直線為軸,可得 ,可得,設
可得,平方可得 ,

即有

化為

的軌跡是以 ,半徑為的圓,可得的面積的最大值為 故④正確;
故答案為:②③④.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)fx)的最小值為1,且f0)=f2)=3

1)求fx)的解析式;

2)若fx)在區(qū)間[2a,a+1]上不單調,求實數(shù)a的取值范圍;

3)在區(qū)間[1,1]上,yfx)的圖象恒在y2x+2m+1的圖象上方,試確定實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了了解學生的學習情況,一次測試中,科任老師從本班中抽取了n個學生的成績(滿分100分,且抽取的學生成績均在內)進行統(tǒng)計分析.按照,,,,,的分組作出頻率分布直方圖和頻數(shù)分布表.

頻數(shù)分布表

x

4

10

12

8

4

1)求nax的值;

2)在選取的樣本中,從低于60分的學生中隨機抽取兩名學生,試問這兩名學生在同一組的概率是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《九章算術》是我國古代的數(shù)學名著,書中把三角形的田稱為“圭田”,把直角梯形的田稱為“邪田”,稱底是“廣”,稱高是“正從”,“步”是丈量土地的單位.現(xiàn)有一邪田,廣分別為十步和二十步,正從為十步,其內有一塊廣為八步,正從為五步的圭田.若在邪田內隨機種植一株茶樹,求該株茶樹恰好種在圭田內的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】近期,濟南公交公司分別推出支付寶和微信掃碼支付乘車活動,活動設置了一段時間的推廣期,由于推廣期內優(yōu)惠力度較大,吸引越來越多的人開始使用掃碼支付.某線路公交車隊統(tǒng)計了活動剛推出一周內每一天使用掃碼支付的人次,用表示活動推出的天數(shù), 表示每天使用掃碼支付的人次(單位:十人次),統(tǒng)計數(shù)據(jù)如表所示:

根據(jù)以上數(shù)據(jù),繪制了散點圖.

(1)根據(jù)散點圖判斷,在推廣期內, (均為大于零的常數(shù))哪一個適宜作為掃碼支付的人次關于活動推出天數(shù)的回歸方程類型?(給出判斷即可,不必說明理由);

(2)根據(jù)(1)的判斷結果及表中的數(shù)據(jù),建立關于的回歸方程,并預測活動推出第天使用掃碼支付的 人次;

(3)推廣期結束后,車隊對乘客的支付方式進行統(tǒng)計,結果如下

車隊為緩解周邊居民出行壓力,以萬元的單價購進了一批新車,根據(jù)以往的經(jīng)驗可知,每輛車每個月的運營成本約為萬元.已知該線路公交車票價為元,使用現(xiàn)金支付的乘客無優(yōu)惠,使用乘車卡支付的乘客享受折優(yōu)惠,掃碼支付的乘客隨機優(yōu)惠,根據(jù)統(tǒng)計結果得知,使用掃碼支付的乘客中有的概率享受折優(yōu)惠,有的概率享受折優(yōu)惠,有的概率享受折優(yōu)惠.預計該車隊每輛車每個月有萬人次乘車,根據(jù)給數(shù)據(jù)以事件發(fā)生的頻率作為相應事件發(fā)生的概率,在不考慮其它因素的條件下,按照上述收費標準,假設這批車需要年才能開始盈利,求的值.

參考數(shù)據(jù):

其中其中

參考公式:

對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計公式分別為: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為響應綠色出行,某市在推出共享單車后,又推出新能源分時租賃汽車.其中一款新能源分時租賃汽車,每次租車收費的標準由兩部分組成:根據(jù)行駛里程數(shù)按1/公里計費;行駛時間不超過分時,按/分計費;超過分時,超出部分按/分計費.已知王先生家離上班地點15公里,每天租用該款汽車上、下班各一次.由于堵車、紅綠燈等因素,每次路上開車花費的時間()是一個隨機變量.現(xiàn)統(tǒng)計了50次路上開車花費時間,在各時間段內的頻數(shù)分布情況如下表所示:

時間(分)

頻數(shù)

2

18

20

10

將各時間段發(fā)生的頻率視為概率,每次路上開車花費的時間視為用車時間,范圍為分.

(1)寫出王先生一次租車費用(元)與用車時間(分)的函數(shù)關系式;

(2)若王先生一次開車時間不超過40分為路段暢通”,表示3次租用新能源分時租賃汽車中路段暢通的次數(shù),求的分布列和期望;

(3)若公司每月給1000元的車補,請估計王先生每月(按22天計算)的車補是否足夠上、下班租用新能源分時租賃汽車?并說明理由(同一時段,用該區(qū)間的中點值作代表)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,函數(shù)=.

(1)求的最大值:

(2)若關于的方程有實數(shù)解,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,且sin(α+β)=3sin(α-β).

(1)若tanα=2,求tanβ的值;

(2)求tan(α-β)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

1)當時,求的最大值和最小值;

2)求實數(shù)的取值范圍,使在區(qū)間上是單調函數(shù).

查看答案和解析>>

同步練習冊答案