已知函數(shù)(其中常數(shù)a,b∈R)。 是奇函數(shù).
(Ⅰ)求的表達(dá)式;
(Ⅱ)求在區(qū)間[1,2]上的最大值和最小值.
(1);(2)最大值,最小值為     
(1)利用函數(shù)的奇偶性和導(dǎo)函數(shù)知識,列出關(guān)于a,b的方程,求解即可得到函數(shù)解析式;(2)利用導(dǎo)數(shù)法求解函數(shù)最值的步驟求解即可.
解:(Ⅰ)由題意得
因此 ……2分
是奇函數(shù),所以
         ………4分
上是減函數(shù);
當(dāng)
從而在區(qū)間上是增函數(shù).           ………8分
由前面討論知,

因此
最小值為        ………10分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分16分)本題共有3個(gè)小題,第1小題滿分4分,第2小題滿分6分,第3小題滿分6分。
定義:對函數(shù),對給定的正整數(shù),若在其定義域內(nèi)存在實(shí)數(shù),使得,則稱函數(shù)為“性質(zhì)函數(shù)”。
(1)判斷函數(shù)是否為“性質(zhì)函數(shù)”?說明理由;
(2)若函數(shù)為“2性質(zhì)函數(shù)”,求實(shí)數(shù)的取值范圍;
(3)已知函數(shù)的圖像有公共點(diǎn),求證:為“1性質(zhì)函數(shù)”。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù) ,∈R
(1)當(dāng)時(shí),取得極值,求的值;
(2)若內(nèi)為增函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(1)若,求函數(shù)的極值;
(2)若對任意的,都有成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)上既有極大值又有極小值,則的取值范圍為
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)函數(shù)               (     )
A在區(qū)間內(nèi)均有零點(diǎn)。
B在區(qū)間內(nèi)均無零點(diǎn)。
C在區(qū)間內(nèi)有零點(diǎn),在區(qū)間內(nèi)無零點(diǎn)。 
D在區(qū)間內(nèi)無零點(diǎn),在區(qū)間內(nèi)有零點(diǎn)。    

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

的導(dǎo)函數(shù),的圖象如右圖所示,則的圖象只可能是(  )

(A)          (B)          (C)         (D)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù) 
(1)當(dāng)時(shí),求函數(shù)的最大值;
(2)令,()其圖象上任意一點(diǎn)處切線的斜率恒成立,求實(shí)數(shù)的取值范圍;
(3)當(dāng),,方程有唯一實(shí)數(shù)解,求正數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(I)求f(x)的單調(diào)區(qū)間;
(II)若對任意x∈[1,e],使得g(x)≥-x2+(a+2)x恒成立,求實(shí)數(shù)a的取值范圍;
(III)設(shè)F(x)=,曲線y=F(x)上是否總存在兩點(diǎn)P,Q,使得△POQ是以O(shè)(O為坐標(biāo)原點(diǎn))為鈍角柄點(diǎn)的鈍角三角開,且最長邊的中點(diǎn)在y軸上?請說明理由。

查看答案和解析>>

同步練習(xí)冊答案