精英家教網 > 高中數學 > 題目詳情

已知函數的圖象過點,且在內單調遞減,在上單調遞增.

(1)求的解析式;

(2)若對于任意的,不等式恒成立,試問這樣的是否存在.若存在,請求出的范圍,若不存在,說明理由

解: (1)∵,

由題設可知:sinθ≥1    ∴sinθ=1.    

從而a= ,∴f(x)= x3+x2-2x+c,而又由f(1)= c=.

f(x)= x3+x2-2x+即為所求.                            

(2)由=(x+2)(x-1),易知f(x)在(-∞,-2)及(1,+∞)上均為增函數,在(-2,1)上為減函數.         

①當m>1時,f(x)在[m,m+3]上遞增,故f(x)max=f(m+3), f(x)min=f(m)

f(m+3)-f(m)= (m+3)3+(m+3)2-2(m+3)-m3m2+2m=3m2+12m+,

得-5≤m≤1.這與條件矛盾,故 不存在.               

② 當0≤m≤1時,f(x)在[m,1]上遞增, 在[1,m+3]上遞增

f(x)min=f(1), f(x)max=max{ f(m),f(m+3) },

f(m+3)-f(m)= 3m2+12m+=3(m+2)2>0(0≤m≤1)∴f(x)max= f(m+3)∴|f(x1)-f(x2)|≤f(x)maxf(x)min= f(m+3)-f(1)≤f(4)-f(1)= 恒成立. 

故當0≤m≤1時,原不等式恒成立.綜上,存在mm∈[0,1]合題意.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(05年福建卷文)(12分)

已知函數的圖象過點P(0,2),且在點M(-1,f(-1))處的切線方程為.

   (Ⅰ)求函數的解析式;

(Ⅱ)求函數的單調區(qū)間.

查看答案和解析>>

科目:高中數學 來源: 題型:

(本小題滿分13分)

已知函數的圖象過點,且在點處的切線方程為.

   (Ⅰ)求函數的解析式;

(Ⅱ)求函數的單調區(qū)間.

查看答案和解析>>

科目:高中數學 來源:2011年上海市盧灣區(qū)高考數學一模試卷(理科)(解析版) 題型:解答題

已知函數的圖象過點A(3,7),則此函的最小值是   

查看答案和解析>>

科目:高中數學 來源:2015屆四川省資陽市高一上學期期末質量檢測數學試卷(解析版) 題型:解答題

(本小題滿分12分)

已知函數的圖象過點,且圖象上與點P最近的一個最低點是

(Ⅰ)求的解析式;

(Ⅱ)若,且為第三象限的角,求的值;

(Ⅲ)若在區(qū)間上有零點,求的取值范圍.

 

查看答案和解析>>

科目:高中數學 來源:2013屆福建省高二下學期第一次階段考數學理科試卷 題型:解答題

已知函數的圖象過點P(0,2),且在點M(-1,f(-1))處的切線方程為.

(1)求函數的解析式;  (2)求函數的單調區(qū)間

 

查看答案和解析>>

同步練習冊答案