【題目】已知正方體,點, , 分別是線段, 和上的動點,觀察直線與, 與.給出下列結(jié)論:
①對于任意給定的點,存在點,使得;
②對于任意給定的點,存在點,使得;
③對于任意給定的點,存在點,使得;
④對于任意給定的點,存在點,使得.
其中正確結(jié)論的個數(shù)是( ).
A. 個 B. 個 C. 個 D. 個
【答案】C
【解析】①只有平面,即平面時,
才能滿足對于任意,給定的點,存在點,使得,
∵過點與平面垂直的直線只有一條,而,故①錯誤.
②當點與重合時, 且,∴ 平面,
∵對于任意給定的點,存在點,使得,故②正確.
③只有垂直于在平面中的射影時, ,故③正確.
④只有平面時,④才正確,因為過點的平面的垂線與無交點,故④錯誤.
綜上,正確的結(jié)論是②③,故選.
點睛:垂直、平行關(guān)系證明中應(yīng)用轉(zhuǎn)化與化歸思想的常見類型.
(1)證明線面、面面平行,需轉(zhuǎn)化為證明線線平行.
(2)證明線面垂直,需轉(zhuǎn)化為證明線線垂直.
(3)證明線線垂直,需轉(zhuǎn)化為證明線面垂直.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】交強險是車主必須為機動車購買的險種,若普通6座以下私家車投保交強險第一年的費用(基準保費)統(tǒng)一為元,在下一年續(xù)保時,實行的是費率浮動機制,保費與上一年度車輛發(fā)生道路交通事故的情況相聯(lián)系,發(fā)生交通事故的次數(shù)越多,費率也就越高,具體浮動情況如下表:
交強險浮動因素和浮動費率比率表 | ||
浮動因素 | 浮動比率 | |
上一個年度未發(fā)生有責任道路交通事故 | 下浮10% | |
上兩個年度未發(fā)生責任道路交通事故 | 下浮20% | |
上三個及以上年度未發(fā)生有責任道路交通事故 | 下浮30% | |
上一個年度發(fā)生一次有責任不涉及死亡的道路交通事故 | 0% | |
上一個年度發(fā)生兩次及兩次以上有責任道路交通事故 | 上浮10% | |
上一個年度發(fā)生有責任道路交通死亡事故 | 上浮30% |
某機購為了研究某一品牌普通6座以下私家車的投保情況,隨機抽取了60輛車齡已滿三年的該品牌同型號私家車的下一年續(xù)保時的情況,統(tǒng)計得到了下面的表格:
類型 | ||||||
數(shù)量 | 10 | 5 | 5 | 20 | 15 | 5 |
(1)求一輛普通6座以下私家車在第四年續(xù)保時保費高于基本保費的頻率;
(2)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強險保費高于基本保費的車輛記為事故車,假設(shè)購進一輛事故車虧損5000元,一輛非事用戶車盈利10000元,且各種投保類型車的頻率與上述機構(gòu)調(diào)查的頻率一致,完成下列問題:
①若該銷售商店內(nèi)有六輛(車齡已滿三年)該品牌二手車,某顧客欲在店內(nèi)隨機挑選兩輛車,求這兩輛車恰好有一輛為事故車的概率;
②若該銷售商一次購進120輛(車齡已滿三年)該品牌二手車,求一輛車盈利的平均值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有道數(shù)學(xué)題,其中道選擇題, 道填空題,小明從中任取道題,求:
(1)所取的道題都是選擇題的概率;
(2)所取的道題不是同一種題型的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一次愛心捐款活動中,小李為了了解捐款數(shù)額是否和居民自身的經(jīng)濟收入有關(guān),隨機調(diào)査了某地區(qū)的個捐款居民每月平均的經(jīng)濟收入. 在捐款超過元的居民中,每月平均的經(jīng)濟收入沒有達到元的有個,達到元的有個;在捐款不超過元的居民中,每月平均的經(jīng)濟收入沒有達到元的有個.
(1)在下圖表格空白處填寫正確數(shù)字,并說明是否有以上的把握認為捐款數(shù)額是否超過元和居民毎月平均的經(jīng)濟收入是否達到元有關(guān)?
(2)將上述調(diào)查所得到的頻率視為概率. 現(xiàn)在從該地區(qū)大量居民中,采用隨機抽樣方法毎次抽取個居民,共抽取次,記被抽取的個居民中經(jīng)濟收入達到元的人數(shù)為,求和期望的值.
每月平均經(jīng)濟收入達到元 | 每月平均經(jīng)濟收入沒有達到元 | 合計 | |
捐款超過元 | |||
捐款不超過元 | |||
合計 |
附: ,其中
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)g(x)=asinxcosx(a>0)的最大值為 ,則函數(shù)f(x)=sinx+acosx的圖象的一條對稱軸方程為( )
A.x=0
B.x=﹣
C.x=﹣
D.x=﹣
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓心在軸上的圓與直線切于點.
(1)求圓的標準方程;
(2)已知,經(jīng)過原點,且斜率為正數(shù)的直線與圓交于兩點.
(。┣笞C: 為定值;
(ⅱ)求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為推行“新課堂”教學(xué)法,某化學(xué)老師分別用傳統(tǒng)教學(xué)和“新課堂”兩種不同的教學(xué)方式,在甲、乙兩個班級中進行教學(xué)實驗,為了比較教學(xué)效果,期中考試后,分別從兩個班級中各隨機抽取20名學(xué)生的成績進行統(tǒng)計,作出的莖葉圖如下圖,記成績不低于70分者為“成績優(yōu)良”.
(1)分別計算甲、乙兩班20個樣本中,化學(xué)分數(shù)前十的平均分,并大致判斷哪種教學(xué)方式的教學(xué)效果更佳;
(2)由以上統(tǒng)計數(shù)據(jù)填寫下面列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.05的前提下認為“成績優(yōu)良與教學(xué)方式有關(guān)”?
附:參考公式: ,其中.
臨界值表:
0.10 | 0.05 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,扇形AOB,圓心角AOB等于60°,半徑為2,在弧AB上有一動點P,過P引平行于OB的直線和OA交于點C,設(shè)∠AOP=θ,當△POC面積的最大值時θ的值為___________
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com