【題目】如圖,四棱錐,側(cè)面是邊長(zhǎng)為2的正三角形,且與底面垂直,底面是的菱形, 為棱上的動(dòng)點(diǎn),且.
(I)求證: 為直角三角形;
(II)試確定的值,使得二面角的平面角余弦值為.
【答案】(1)見(jiàn)解析;(II) .
【解析】試題分析:(1)取中點(diǎn),連結(jié),以為原點(diǎn), 為軸, 為軸, 為軸,建立空間直角坐標(biāo)系,利用向量法能證明為直角三角形;(2)設(shè),由,得,求出平面的法向量和平面的法向量,,根據(jù)空間向量夾角余弦公式能求出結(jié)果.
試題解析:(I)取中點(diǎn),連結(jié),依題意可知均為正三角形,所以,
又平面平面,
所以平面,
又平面,所以,
因?yàn)?/span>,所以,即,
從而為直角三角形.
說(shuō)明:利用 平面證明正確,同樣滿(mǎn)分!
(II)[向量法]由(I)可知,又平面平面,平面平面,
平面,所以平面.
以為原點(diǎn),建立空間直角坐標(biāo)系如圖所示,則
,
由可得點(diǎn)的坐標(biāo)
所以,
設(shè)平面的法向量為,則,
即解得,
令,得,
顯然平面的一個(gè)法向量為,
依題意,
解得或(舍去),
所以,當(dāng)時(shí),二面角的余弦值為.
[傳統(tǒng)法]由(I)可知平面,所以,
所以為二面角的平面角,
即,
在中, ,
所以
,
由正弦定理可得,即
解得,
又,所以,
所以,當(dāng)時(shí),二面角的余弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)某校高一年級(jí)學(xué)生參加社區(qū)服務(wù)次數(shù)進(jìn)行統(tǒng)計(jì),隨機(jī)抽取名學(xué)生作為樣本,得到這名學(xué)生參加社區(qū)服務(wù)的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計(jì)表和頻率分布直方圖如下:
分組 | 頻數(shù) | 頻率 |
10 | 0.25 | |
25 | ||
2 | 0.05 | |
合計(jì) | 1 |
(1)求出表中及圖中的值;
(2)試估計(jì)他們參加社區(qū)服務(wù)的平均次數(shù);
(3)在所取樣本中,從參加社區(qū)服務(wù)的次數(shù)不少于20次的學(xué)生中任選2人,求至少1人參加社區(qū)服務(wù)次數(shù)在區(qū)間內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的幾何體中,四邊形是矩形, 平面, , ∥, , , 分別是, 的中點(diǎn).
(Ⅰ)求證: ∥平面;
(Ⅱ)求證: 平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面是矩形,面底面,且是邊長(zhǎng)為的等邊三角形, , 在上,且∥面BDM.
(1)求直線(xiàn)PC與平面BDM所成角的正弦值;
(2)求平面BDM與平面PAD所成銳二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓: (),設(shè)為圓與軸負(fù)半軸的交點(diǎn),過(guò)點(diǎn)作圓的弦,并使弦的中點(diǎn)恰好落在軸上.
(Ⅰ)求點(diǎn)的軌跡的方程;
(Ⅱ)延長(zhǎng)交曲線(xiàn)于點(diǎn),曲線(xiàn)在點(diǎn)處的切線(xiàn)與直線(xiàn)交于點(diǎn),試判斷以點(diǎn)為圓心,線(xiàn)段長(zhǎng)為半徑的圓與直線(xiàn)的位置關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(, ),曲線(xiàn)在處的切線(xiàn)方程為.
(Ⅰ)求, 的值;
(Ⅱ)證明: ;
(Ⅲ)已知滿(mǎn)足的常數(shù)為.令函數(shù)(其中是自然對(duì)數(shù)的底數(shù), ),若是的極值點(diǎn),且恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校高三年級(jí)一次數(shù)學(xué)考試后,為了解學(xué)生的數(shù)學(xué)學(xué)習(xí)情況,隨機(jī)抽取名學(xué)生的數(shù)學(xué)成績(jī),制成表所示的頻率分布表.
組號(hào) | 分組 | 頻數(shù) | 頻率 |
第一組 | |||
第二組 | |||
第三組 | |||
第四組 | |||
第五組 | |||
合計(jì) |
(1)求、、的值;
(2)若從第三、四、五組中用分層抽樣方法抽取名學(xué)生,并在這名學(xué)生中隨機(jī)抽取名學(xué)生與張老師面談,求第三組中至少有名學(xué)生與張老師面談的概率
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在研究塞卡病毒(Zika virus)某種疫苗的過(guò)程中,為了研究小白鼠連續(xù)接種該種疫苗后出現(xiàn)癥狀的情況,做接種試驗(yàn),試驗(yàn)設(shè)計(jì)每天接種一次,連續(xù)接種3天為一個(gè)接種周期.已知小白鼠接種后當(dāng)天出現(xiàn)癥狀的概率為,假設(shè)每次接種后當(dāng)天是否出現(xiàn)癥狀與上次接種無(wú)關(guān).
(1)若出現(xiàn)癥狀即停止試驗(yàn),求試驗(yàn)至多持續(xù)一個(gè)接種周期的概率;
(2)若在一個(gè)接種周期內(nèi)出現(xiàn)3次 癥狀,則這個(gè)接種周期結(jié)束后終止試驗(yàn),試驗(yàn)至多持續(xù)3個(gè)周期,設(shè)接種試驗(yàn)持續(xù)的接種周期數(shù)為 ,求 的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若,求函數(shù)的極值;
(2)若函數(shù)有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com