精英家教網 > 高中數學 > 題目詳情

【題目】已知曲線C1的參數方程為 (t為參數).以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C2的極坐標方程為ρ=2cosθ. (Ⅰ)把C1的參數方程化為極坐標方程;
(Ⅱ)求C1與C2交點的極坐標(ρ≥0,0≤θ<2π).

【答案】解:(Ⅰ)曲線C1的參數方程為 (t為參數), 則曲線C1的普通方程為(x﹣5)2+(y﹣4)2=25,
曲線C1的極坐標方程為ρ2﹣10ρcosθ﹣8ρsinθ+16=0.
(Ⅱ)曲線C1的極坐標方程ρ2﹣10ρcosθ﹣8ρsinθ+16=0,曲線C2的極坐標方程為ρ=2cosθ,聯(lián)立得 ,又θ∈[0,2π),則θ=0或 ,
當θ=0時,ρ=2;當 時, ,所以交點坐標為(2,0),
【解析】(Ⅰ)把C1的參數方程化為普通方程,再化為極坐標方程;(Ⅱ)曲線C1的極坐標方程ρ2﹣10ρcosθ﹣8ρsinθ+16=0,曲線C2的極坐標方程為ρ=2cosθ,聯(lián)立,即可求C1與C2交點的極坐標.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知橢圓C以原點為中心,左焦點F的坐標是(﹣1,0),長軸長是短軸長的 倍,直線l與橢圓C交于點A與B,且A、B都在x軸上方,滿足∠OFA+∠OFB=180°;

(1)求橢圓C的標準方程;
(2)對于動直線l,是否存在一個定點,無論∠OFA如何變化,直線l總經過此定點?若存在,求出該定點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設△AnBnCn的三邊長分別為an , bn , cn , △AnBnCn的面積為Sn , n=1,2,3…若b1>c1 , b1+c1=2a1 , an+1=an , ,則(
A.{Sn}為遞減數列
B.{Sn}為遞增數列
C.{S2n1}為遞增數列,{S2n}為遞減數列
D.{S2n1}為遞減數列,{S2n}為遞增數列

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列{an},a1=a(a∈R),an+1= (n∈N*).
(1)若數列{an}從第二項起每一項都大于1,求實數a的取值范圍;
(2)若a=﹣3,記Sn是數列{an}的前n項和,證明:Sn<n+

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列{an}滿足:a1+2a2+…+nan=4﹣
(1)求數列{an}的通項公式;
(2)若bn=(3n﹣2)an , 求數列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=2cos( ﹣x)cos(x+ )+ . (Ⅰ)求函數f(x)的最小正周期和單調遞減區(qū)間;
(Ⅱ)求函數f(x)在區(qū)間[0, ]上的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在△ABC中,D在AB上,AD:DB=1:2,E為AC中點,CD、BE相交于點P,連結AP.設 =x +y (x,y∈R),則x,y的值分別為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)= ﹣axlnx(a∈R)在x=1處的切線方程為y=bx+1+ (b∈R).
(1)求a,b的值;
(2)證明:f(x)<
(3)若正實數m,n滿足mn=1,證明: + <2(m+n).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某校后勤處為跟蹤調查該校餐廳的當月的服務質量,兌現(xiàn)獎懲,從就餐的學生中隨機抽出100位學生對餐廳服務質量打分(5分制),得到如圖柱狀圖.
(Ⅰ)從樣本中任意選取2名學生,求恰好有1名學生的打分不低于4分的概率;
(Ⅱ)若以這100人打分的頻率作為概率,在該校隨機選取2名學生進行打分(學生打分之間相互獨立)記X表示兩人打分之和,求X的分布列和E(X).
(Ⅲ)根據(Ⅱ)的計算結果,后勤處對餐廳服務質量情況定為三個等級,并制定了對餐廳相應的獎懲方案,如表所示,設當月獎金為Y(單位:元),求E(Y).

服務質量評分X

X≤5

6≤X≤8

X≥9

等級

不好

較好

優(yōu)良

獎懲標準(元)

﹣1000

2000

3000

查看答案和解析>>

同步練習冊答案