【題目】如圖,四棱錐中,是正三角形,四邊形是菱形,點(diǎn)的中點(diǎn).

(I)求證:// 平面;

(II)若平面平面,, 求直線與平面所成角的正弦值.

【答案】(I)證明見(jiàn)解析;(II).

【解析】

(I)連接BD交AC于點(diǎn)F,再連接EF,利用EF是三角形DBS的中位線,判斷出DS平行EF,再利用線面平行的判定得證;

(II)取AB的中點(diǎn)為O,利用已知條件證明DO、SO、BO兩兩垂直,然后建立空間直角坐標(biāo)系,求出平面ADC的法向量,再利用線面角的公式求出直線與平面所成角的正弦值.

(I)證明:連接BD角AC于點(diǎn)F,再連接EF.

因?yàn)樗倪呅?/span>是菱形,所以點(diǎn)F是BD的中點(diǎn),

又因?yàn)辄c(diǎn)的中點(diǎn),所以EF是三角形DBS的中位線,

所以DS平行EF,

又因?yàn)镋F平面ACE,SD平面ACE

所以// 平面

(II)因?yàn)樗倪呅?/span>是菱形,,所以

又AB=AD,所以三角形ABD為正三角形.

取AB的中點(diǎn)O,連接SO,則DOAB

因?yàn)槠矫?/span>平面,平面 平面=AB

所以DO平面ABS,又因?yàn)槿切蜛BS為正三角形

則以O(shè)為坐標(biāo)原點(diǎn)建立坐標(biāo)系

設(shè)AB=2a,則

設(shè)平面ADS的一個(gè)法向量為

x=1,

所以

設(shè)直線AC與平面ADS所成角為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)點(diǎn),動(dòng)點(diǎn)滿足,的軌跡為曲線.

(1)求曲線的方程;

(2)過(guò)定點(diǎn)作直線交曲線兩點(diǎn).設(shè)為坐標(biāo)原點(diǎn),若直線軸垂直,求面積的最大值;

(3)設(shè),在軸上,是否存在一點(diǎn),使直線的斜率的乘積為非零常數(shù)?若存在,求出點(diǎn)的坐標(biāo)和這個(gè)常數(shù);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,且過(guò)點(diǎn).

I)求橢圓的標(biāo)準(zhǔn)方程;

II)四邊形ABCD的頂點(diǎn)在橢圓上,且對(duì)角線AC,BD過(guò)原點(diǎn)O,設(shè),滿足.

i)試證的值為定值,并求出此定值;

ii)試求四邊形ABCD面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某新上市的電子產(chǎn)品舉行為期一個(gè)星期(7天)的促銷(xiāo)活動(dòng),規(guī)定購(gòu)買(mǎi)該電子產(chǎn)品可免費(fèi)贈(zèng)送禮品一份,隨著促銷(xiāo)活動(dòng)的有效開(kāi)展,第五天工作人員對(duì)前五天中參加活動(dòng)的人數(shù)進(jìn)行統(tǒng)計(jì),y表示第x天參加該活動(dòng)的人數(shù),得到統(tǒng)計(jì)表格如下,經(jīng)計(jì)算得.

x

1

2

3

4

5

y

4

m

10

23

22

1)若yx具有線性相關(guān)關(guān)系,請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程;

2)預(yù)測(cè)該星期最后一天參加該活動(dòng)的人數(shù)(按四舍五入取到整數(shù)).

參考公式:

,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在圓柱中,點(diǎn)、分別為上、下底面的圓心,平面是軸截面,點(diǎn)在上底面圓周上(異于、),點(diǎn)為下底面圓弧的中點(diǎn),點(diǎn)與點(diǎn)在平面的同側(cè),圓柱的底面半徑為1,高為2.

(1)若平面平面,證明:;

(2)若直線與平面所成線面角的正弦值等于,證明:平面與平面所成銳二面角的平面角大于.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中國(guó)古代儒家提出的六藝:禮樂(lè)射御書(shū)數(shù).某校國(guó)學(xué)社團(tuán)預(yù)在周六開(kāi)展六藝課程講座活動(dòng),周六這天準(zhǔn)備排課六節(jié),每藝一節(jié),排課有如下要求:“樂(lè)書(shū)不能相鄰,“要相鄰,則針對(duì)六藝課程講座活動(dòng)的不同排課順序共有( )

A.18B.36C.72D.144

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(Ⅰ)當(dāng)時(shí),解不等式;

(Ⅱ),對(duì)任意都有恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),,

(1)求函數(shù)的極值;

(2)若上為單調(diào)函數(shù),求的取值范圍;

(3)設(shè),若在上至少存在一個(gè),使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】雙曲線 的左、右焦點(diǎn)分別為過(guò)作傾斜角為的直線與軸和雙曲線的右支分別交于兩點(diǎn),若點(diǎn)平分線段,則該雙曲線的離心率是

A. B. C. 2 D.

查看答案和解析>>

同步練習(xí)冊(cè)答案