【題目】如圖PA⊥平面ABCD,ABCD是矩形,PA=AB=1,AD=,點(diǎn)F是PB的中點(diǎn),點(diǎn)E在邊BC上移動(dòng).

1)當(dāng)點(diǎn)E為BC的中點(diǎn)時(shí),試判斷EF與平面PAC的位置關(guān)系,并說明理由;

2)證明:無論點(diǎn)E在邊BC的何處,都有PE⊥AF.

【答案】(1)見解析;(2)見解析。

【解析】試題分析:;(1)利用三角形的中位線及線面平行的判定定理解決;
(2)∵PA⊥平面ABCD,∴EB⊥PAEB⊥AB,∴EB⊥平面PAB,又AF平面PAB,
∴AF⊥BE.又PA=AB=1,點(diǎn)FPB的中點(diǎn),∴AF⊥PB,所以可證出AF⊥平面PBE AF⊥PE易證得

試題解析:

(1)當(dāng)點(diǎn)EBC的中點(diǎn)時(shí),EF與平面PAC平行.
∵在△PBC中,E、F分別為BC、PB的中點(diǎn),
∴EF∥PC,又EF平面PAC,而PC平面PAC,
∴EF∥平面PAC.
(2)證明:
∵PA⊥平面ABCD,BE平面ABCD,
∴EB⊥PA,又EB⊥AB,AB∩AP=A,AB,AP平面PAB,
∴EB⊥平面PAB,又AF平面PAB,
∴AF⊥BE.
PA=AB=1,點(diǎn)FPB的中點(diǎn),
∴AF⊥PB,
又∵PB∩BE=B,PB,BE平面PBE,
∴AF⊥平面PBE.
∵PE平面PBE,
∴AF⊥PE.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù),ω>0,|φ|<)的一個(gè)零點(diǎn)與之相鄰的對(duì)稱軸之間的距離為,且時(shí)fx)有最小值.

(1)求的解析式;

(2)若,求fx)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某數(shù)學(xué)教師對(duì)所任教的兩個(gè)班級(jí)各抽取20名學(xué)生進(jìn)行測試,分?jǐn)?shù)分布如表,若成績120分以上(含120分)為優(yōu)秀.

分?jǐn)?shù)區(qū)間

甲班頻率

乙班頻率

[0,30)

0.1

0.2

[30,60)

0.2

0.2

[60,90)

0.3

0.3

[90,120)

0.2

0.2

[120,150]

0.2

0.1

優(yōu)秀

不優(yōu)秀

總計(jì)

甲班

乙班

總計(jì)

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

P(K2≥k0

0.15

0.10

0.05

0.025

0.010

0.005

0.001

(Ⅰ)求從乙班參加測試的90分以上(含90分)的同學(xué)中,隨機(jī)任取2名同學(xué),恰有1人為優(yōu)秀的概率;
(Ⅱ)根據(jù)以上數(shù)據(jù)完成上面的2×2列聯(lián)表:在犯錯(cuò)概率小于0.1的前提下,你是否有足夠的把握認(rèn)為學(xué)生的數(shù)學(xué)成績是否優(yōu)秀與班級(jí)有關(guān)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在三棱柱ABC﹣A1B1C1中,側(cè)棱A1A⊥底面ABC,AC=1,AA1=2,∠BAC=90°,若直線AB1與直線A1C的夾角的余弦值是 ,則棱AB的長度是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD的底面ABCD為矩形,PA⊥平面ABCD,點(diǎn)E是棱PD的中點(diǎn),點(diǎn)F是PC的中點(diǎn). (Ⅰ)證明:PB∥平面AEC;
(Ⅱ)若底面ABCD為正方形, ,求二面角C﹣AF﹣D大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨機(jī)變量ξ的分布列如表,其中a,b,c成等差數(shù)列.若E(ξ)= ,則D(ξ)=(

ξ

1

2

3

P

a

b

c


A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等腰梯形中(如圖1),, , 邊上一點(diǎn),且沿折起,使平面平面如圖2.

(1)證明:平面平面;

(2)試在棱上確定一點(diǎn),使截面把幾何體分成的兩部分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題錯(cuò)誤的是 ( )

A. 如果平面平面,那么平面內(nèi)一定存在直線平行于平面

B. 如果平面不垂直平面,那么平面內(nèi)一定不存在直線垂直于平面

C. 如果平面平面,平面平面,且,那么

D. 如果平面平面,那么平面內(nèi)所有直線都垂直于平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l過點(diǎn)A(2,4),且被平行直線l1:x-y+1=0與l2:x-y-1=0所截的線段中點(diǎn)M在直線x+y-3=0上,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案