已知在四面體ABCD中,E,F(xiàn)分別是AC,BD的中點,若AB=2,CD=4,EF⊥AB,則EF與CD所成的角的度數(shù)為
 
分析:設(shè)G為AD的中點,連接GF,GE,由三角形中位線定理可得GF∥AB,GE∥CD,則∠GFE即為EF與CD所成的角,結(jié)合AB=2,CD=4,EF⊥AB,解△GEF,即可得到答案.
解答:精英家教網(wǎng)解:設(shè)G為AD的中點,連接GF,GE,
則GF,GE分別為三角形ABD,三角形ACD的中線.
則GF∥AB,且GF=
1
2
AB=1,GE∥CD,且GE=
1
2
CD=2,
則EF與CD所成角的度數(shù)等于EF與GE所成角的度數(shù)
又EF⊥AB,GF∥AB,
∴EF⊥GF
則△GEF為直角三角形,GF=1,GE=2,∠GFE=90°
則在直角△GEF中,sin∠GEF=
1
2

∴∠GEF=30°.
故答案為:30°
點評:本題考查的知識點是異面直線及其所成的角,其中利用三角形中位線定理,得到GF∥AB,GE∥CD,進而得到∠GFE即為EF與CD所成的角,是解答本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知在四面體ABCD中,E,F(xiàn)分別是AC,BD的中點,若AB=2,CD=4,EF⊥AB,則EF與CD所成的角的度數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知在四面體ABCD中,E、F分別是AC、BD的中點,若CD=2AB=4,EF⊥AB,則EF與CD所成的角為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知在△ABC中,a,b,c為內(nèi)角A,B,C所對的邊長,r為內(nèi)切圓的半徑,則△ABC的面積S=
1
2
(a+b+c)
•r,將此結(jié)論類比到空間,已知在四面體ABCD中,已知在四面體ABCD中,
S1,S2,S3,S4分別為四個面的面積,r為內(nèi)切球的半徑
S1,S2,S3,S4分別為四個面的面積,r為內(nèi)切球的半徑
,則
四面體ABCD的體積V=
1
3
(S1+S2+S3+S4).r
四面體ABCD的體積V=
1
3
(S1+S2+S3+S4).r

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知在四面體ABCD中,AC=BD,而且AC⊥BD,E,F(xiàn),G,H分別是邊AB,BC,CD,DA的中點.
求證:四邊形EFGH是正方形.

查看答案和解析>>

同步練習冊答案