【題目】已知曲線C1的參數(shù)方程是(θ為參數(shù)),以坐標(biāo)原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程是ρ=-2cosθ.
(1)寫出C1的極坐標(biāo)方程和C2的直角坐標(biāo)方程;
(2)已知點M1、M2的極坐標(biāo)分別是(1,π)、(2,),直線M1M2與曲線C2相交于P、Q兩點,射線OP與曲線C1相交于點A,射線OQ與曲線C1相交于點B,求的值.
【答案】(1),;(2)
【解析】分析:(1)先根據(jù)三角函數(shù)平方關(guān)系將曲線C1的參數(shù)方程化為普通方程,再根據(jù)將普通方程化為極坐標(biāo)方程,利用將 曲線C2的極坐標(biāo)方程化為直角坐標(biāo)方程,(2)先根據(jù)直線M1M2過圓心得P、Q為一直徑端點,即得OA⊥OB,設(shè)A,B極坐標(biāo),并代入C1的極坐標(biāo)方程化簡可得結(jié)果.
詳解:(1)曲線C1的普通方程:x2+=1,化為極坐標(biāo)方程:ρ2cos2θ+=1,
曲線C2的直角坐標(biāo)方程:(x+1)2+y2=1.
(2)在直角坐標(biāo)系下,M1(-1,0),M2(0,2),
線段PQ是圓(x+1)2+y2=1的一條直徑,
∴∠POQ=90°,由OP⊥OQ,有OA⊥OB,
A,B是橢圓x2+=1上的兩點,在極坐標(biāo)系下,
設(shè)A(ρ1,θ),B(ρ2,θ+),分別代入ρ2cos2θ+=1中,
有ρcos2θ+=1,ρcos2(θ+)+=1,
解得:=cos2θ+,=sin2θ+.
則+=cos2θ++sin2θ+=1+=
即+=.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知雙曲線C: ﹣y2=1(a>0)的右焦點為F,點A,B分別在C的兩條漸近線AF⊥x軸,AB⊥OB,BF∥OA(O為坐標(biāo)原點).
(1)求雙曲線C的方程;
(2)過C上一點P(x0 , y0)(y0≠0)的直線l: ﹣y0y=1與直線AF相交于點M,與直線x= 相交于點N.證明:當(dāng)點P在C上移動時, 恒為定值,并求此定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列的前項和為,,,數(shù)列滿足:,.
(1)求;
(2)求數(shù)列的通項公式及其前項和;
(3)記集合,若的子集個數(shù)為32,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)a是一個各位數(shù)字都不是0且沒有重復(fù)數(shù)字三位數(shù),將組成a的3個數(shù)字按從小到大排成的三位數(shù)記為I(a),按從大到小排成的三位數(shù)記為D(a)(例如a=815,則I(a)=158,D(a)=851),閱讀如圖所示的程序框圖,運行相應(yīng)的程序,任意輸入一個a,輸出的結(jié)果b= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某輪船公司的一艘輪船每小時花費的燃料費與輪船航行速度的平方成正比,比例系數(shù)為輪船的最大速度為15海里小時當(dāng)船速為10海里小時,它的燃料費是每小時96元,其余航行運作費用(不論速度如何)總計是每小時150元假定運行過程中輪船以速度v勻速航行.
求k的值;
求該輪船航行100海里的總費用燃料費航行運作費用的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠在政府的幫扶下,準(zhǔn)備轉(zhuǎn)型生產(chǎn)一種特殊機器,生產(chǎn)需要投入固定成本萬元,生產(chǎn)與銷售均已百臺計數(shù),且每生產(chǎn)臺,還需增加可變成本萬元,若市場對該產(chǎn)品的年需求量為臺,每生產(chǎn)百臺的實際銷售收入近似滿足函數(shù).
()試寫出第一年的銷售利潤(萬元)關(guān)于年產(chǎn)量(單位:百臺,,)的函數(shù)關(guān)系式:(說明:銷售利潤=實際銷售收入-成本)
()因技術(shù)等原因,第一年的年生產(chǎn)量不能超過臺,若第一年的年支出費用(萬元)與年產(chǎn)量(百臺)的關(guān)系滿足,問年產(chǎn)量為多少百臺時,工廠所得純利潤最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知標(biāo)準(zhǔn)方程下的橢圓的焦點在軸上,且經(jīng)過點,它的一個焦點恰好與拋物線的焦點重合.橢圓的上頂點為,過點的直線交橢圓于兩點,連接、,記直線的斜率分別為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com