【題目】已知橢圓的左、右焦點(diǎn)分別為,,過(guò)且垂直于軸的焦點(diǎn)弦的弦長(zhǎng)為,過(guò)的直線(xiàn)交橢圓兩點(diǎn),且的周長(zhǎng)為.

(1)求橢圓的方程;

(2)已知直線(xiàn)互相垂直,直線(xiàn)過(guò)且與橢圓交于點(diǎn)兩點(diǎn),直線(xiàn)過(guò)且與橢圓交于兩點(diǎn).求的值.

【答案】(1)(2)

【解析】分析:(1)根據(jù)周長(zhǎng)確定,由通徑確定,求得,因而確定橢圓的方程。

(2)分析得直線(xiàn)、直線(xiàn)的斜率存在時(shí),根據(jù)過(guò)焦點(diǎn)可設(shè)出AB直線(xiàn)方程為,因而直線(xiàn)的方程為.聯(lián)立橢圓方程消去y,得到關(guān)于x的一元二次方程.由韋達(dá)定理求得,進(jìn)而.

當(dāng)AB斜率不存在時(shí),求得,,所以。

當(dāng)直線(xiàn)的斜率為時(shí),求得,所以。

即可判斷。

詳解:(1)將代入,得,所以.

因?yàn)?/span>的周長(zhǎng)為,所以,

代入,可得,

所以橢圓的方程為.

(2)(i)當(dāng)直線(xiàn)、直線(xiàn)的斜率存在且不為時(shí),

設(shè)直線(xiàn)的方程為,則直線(xiàn)的方程為.

消去.

由韋達(dá)定理得,

所以, .

同理可得.

.

(ii)當(dāng)直線(xiàn)的斜率不存在時(shí),,.

(iii)當(dāng)直線(xiàn)的斜率為時(shí),,.

綜上,.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的幾何體中,四邊形是正方形, 平面分別為的中點(diǎn),且.

(1)求證:平面平面

(2)求證:平面P;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一家公司生產(chǎn)某種品牌服裝的年固定成本為10萬(wàn)元,每生產(chǎn)1千件需另投入2.7萬(wàn)元.設(shè)該公司一年內(nèi)共生產(chǎn)該品牌服裝x千件并全部銷(xiāo)售完,每千件的銷(xiāo)售收入為萬(wàn)元,且.

1)寫(xiě)出年利潤(rùn)W(萬(wàn)元)關(guān)于年產(chǎn)量x(千件)的函數(shù)解析式;

2)年產(chǎn)量為多少千件時(shí),該公司在這一品牌服裝的生產(chǎn)中所獲得利潤(rùn)最大?(注:年利潤(rùn)=年銷(xiāo)售收入年總成本)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在斜三棱柱ABCA1B1C1中,側(cè)面AA1C1C是菱形,AC1A1C交于點(diǎn)O,點(diǎn)EAB的中點(diǎn).

(1)求證:OE∥平面BCC1B1.

(2)AC1A1B,求證:AC1BC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知 ,若,且的圖象相鄰的對(duì)稱(chēng)軸間的距離不小于.

(1)求的取值范圍.

(2)若當(dāng)取最大值時(shí), ,且在中, 分別是角的對(duì)邊,其面積,求周長(zhǎng)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)有 (n≥2,n∈N*)個(gè)給定的不同的數(shù)隨機(jī)排成一個(gè)下圖所示的三角形數(shù)陣:
設(shè)Mk是第k行中的最大數(shù),其中1≤k≤n,k∈N*.記M1<M2<…<Mn的概率為pn
(1)求p2的值;
(2)證明:pn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若數(shù)列對(duì)任意滿(mǎn)足,下面給出關(guān)于數(shù)列的四個(gè)命題:①可以是等差數(shù)列,②可以是等比數(shù)列;③可以既是等差又是等比數(shù)列;④可以既不是等差又不是等比數(shù)列;則上述命題中,正確的個(gè)數(shù)為(

A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給定數(shù)列{cn},如果存在常數(shù)p、q使得cn+1=pcn+q對(duì)任意n∈N*都成立,則稱(chēng){cn}為“M類(lèi)數(shù)列”.

(1)若{an}是公差為d的等差數(shù)列,判斷{an}是否為“M類(lèi)數(shù)列”,并說(shuō)明理由;

(2)若{an}是“M類(lèi)數(shù)列”且滿(mǎn)足:a1=2,an+an+1=32n

①求a2、a3的值及{an}的通項(xiàng)公式;

②設(shè)數(shù)列{bn}滿(mǎn)足:對(duì)任意的正整數(shù)n,都有a1bn+a2bn﹣1+a3bn﹣2+…+anb1=32n+1﹣4n﹣6,且集合M={n|≥λ,n∈N*}中有且僅有3個(gè)元素,試求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我校舉行“兩城同創(chuàng)”的知識(shí)競(jìng)賽答題,高一年級(jí)共有1200名學(xué)生參加了這次競(jìng)賽.為了解競(jìng)賽成績(jī)情況,從中抽取了100名學(xué)生的成績(jī)進(jìn)行統(tǒng)計(jì).其中成績(jī)分組區(qū)間為,,,,其頻率分布直方圖如圖所示,請(qǐng)你解答下列問(wèn)題:

(1)求的值;

(2)若成績(jī)不低于90分的學(xué)生就能獲獎(jiǎng),問(wèn)所有參賽學(xué)生中獲獎(jiǎng)的學(xué)生約為多少人;

(3)根據(jù)頻率分布直方圖,估計(jì)這次平均分(用組中值代替各組數(shù)據(jù)的平均值).

查看答案和解析>>

同步練習(xí)冊(cè)答案